Plano de Ensino e Mapa de Atividades

Disciplina: Estrutura da Matéria

Docente: Unificada

Quadrimestre: 2022.3 Carga horária total prevista: T-P-I: 3-0-4

Metodologia:

A disciplina será conduzida presencialmente com material complementar no Moodle:

Código do curso no Moodle: EM-BIK0102-U-2021.3, link: https://moodle.ufabc.edu.br/course/view.php?id=3719#section-0

UNIFICADA entre os professores. Os atendimentos serão realizados utilizando ferramentas a serem combinadas entre cada professor e suas turmas, sendo essas informações registradas na subpágina do Professor na aba do curso no Moodle. As atividades serão, em resumo, organizadas da seguinte maneira:

Aulas presenciais: Sextas-feiras – semanal; Terças-feiras – quinzenal 1

Sexta a segunda: Teste semanal (duração a depender do teste e informado nas instruções enviadas com antecedência)

P1 e P2: Presenciais

Procedimentos de Avaliação da Aprendizagem:

A avaliação será composta por **9 testes** semanais e duas provas. Os testes ficarão disponíveis por **72 horas** no sistema do Moodle, com tempo pré-determinado para realização (2 a 3 horas, a depender do teste/prova). A média do aluno será calculada da seguinte maneira:

Conceito final: 70% [(P1+P2)/2] + 30% (média dos testes)

Cronograma e mapa de atividades:

Sema na (período)	(Unidade) Tema principal	(Subunidade) Subtema	Objetivos específicos	Atividades teóricas, recursos midiáticos e ferramentas	Atividades práticas, recursos midiáticos e ferramentas
Qual o tempo de dedicaçã o na semana? T+I 3+4 = 7 horas seman ais		O que os estudantes aprenderão?	Quais objetivos de aprendizagem devem ser alcançados em cada semana?	Que recursos midiáticos apoiarão a interação com o conteúdo e o aprendizado?	Quais as ferramentas apoiarão a realização das atividades, a interação com o conteúdo e com os colegas?
1 19/9 a 23/9	Tópico 1: Bases da teoria atômica Tópico 2: Bases da teoria atômica	Do micro ao macro, modelo padrão de partículas e forças fundamentais, escalas e unidades de medidas, estimativas e notação científica, unidades do sistema internacional. Histórico da concepção da estrutura da matéria nas idades clássica e média, lei das proporções definidas e múltiplas, modelo atômico de Dalton, lei da combinação volumétrica, determinação de massas atômicas e fórmulas moleculares, conceito de mol, equação química, relações e cálculos estequiométricos.	Reconhecer os limites das escalas da matéria possíveis de serem estudadas; Comparar diferentes escalas de unidades; Compreender as diferentes forças fundamentais. Recordar ou conhecer a concepção de estrutura da matéria anterior à concepção atual; Entender a origem do modelo atômico de Dalton; Diferenciar as leis ponderais e associá-las com o modelo atômico de Dalton; Identificar uma relação de proporção de quantidade (mol, massa, volume) entre reagentes e produtos.	Leitura do texto preparado para a aula. Assistir às VIDEO- AULAS indicadas no texto.	Assíncrono: Form. diagnóstico: conhecendo os alunos
2 26/9 a	Tópico 3: Propriedade s dos gases	Leis dos gases, teoria cinética dos gases, gases não ideais e livre caminho médio.	Entender o significado da equação do gás ideal e da teoria cinética dos gases; Diferenciar as leis dos gases ideais e explicar a teoria cinética dos gases.	Leitura do texto preparado para a aula. Assistir às	Assíncrono: Teste 1 (conteúdo: tópicos 1 a 3)

30/9				VIDEO- AULAS indicadas no texto.	
3/10 a 7/10	Tópico 4: Natureza elétrica da matéria	Eletricidade, eletrólise, experimentos de Thomson e de Millikan, modelo de Thomson para o átomo.	Relacionar os conhecimentos obtidos sobre a natureza elétrica da matéria e sobre a radioatividade para a concepção dos modelos atômicos apresentados na aula; Fazer cálculos simples utilizando as leis da eletrólise; Entender, de forma detalhada, os conceitos embutidos nos experimentos realizados por Thomson e Millikan.	Leitura do texto preparado para a aula. Assistir às VIDEO- AULAS indicadas no texto.	Assíncrono: Teste 2 (tópico 4)
4 10/10 a 14/10	Tópico 5: Introdução à mecânica quântica	A radiação de corpo negro, a hipótese de quantização de Planck e o efeito fotoelétrico, dualidade onda-partícula, comprimento de onda de de Broglie.	Relacionar os três conceitos apresentados com o modelo atômico de Bohr e entender suas limitações; Explicar a quantização da energia, o efeito fotoelétrico, e relacionar as faixas do espectro eletromagnético de acordo com o comprimento de onda e a frequência; Entender a dualidade partícula-onda de de Broglie; Compreender a diferença entre a mecânica clássica e mecânica quântica.	Leitura do texto preparado para a aula. Assistir às VIDEO- AULAS indicadas no texto.	Assíncrono: Teste 3 (tópico 5)
5 17/10 a 21/10	Tópico 6: Modelos atômicos de Rutherford e Bohr	Experimento de Rutherford e modelo de Rutherford para o átomo, contexto do nascimento do átomo de Bohr – espectros de absorção e de emissão.	Relacionar a descoberta da radioatividade com o modelo atômico de Rutherford; Entender a quantização da energia emitida ou absorvida pelo elétron; Compreender o princípio dos espectros de absorção e de emissão dos elementos químicos.	Leitura do texto preparado para a aula. Assistir às VIDEO- AULAS indicadas no texto.	Assíncrono: Teste 4 (Tópico 6)
6 24/10		FERIADO			20000

a 28/10					
7 01/11	Prova 1 (Tópicos 1 a 6)				
7 4/11	Tópico 7: Aplicações da equação de Schrödinger	Partícula na caixa, átomo de hidrogênio, números quânticos para o átomo de hidrogênio, estados quânticos para o átomo de hidrogênio.	Entender o problema da partícula na caixa e a origem da quantização da energia; Entender o comportamento do elétron no átomo de hidrogênio; Identificar o elétron com os quatro números quânticos.	Leitura do texto preparado para a aula. Assistir às VIDEO- AULAS indicadas no texto.	Assíncrono: Teste 5 (Tópico 7)
8 7/11 a 11/11	Tópico 8: Átomos de muitos elétrons e tabela periódica	Configuração eletrônica, blindagem nuclear, propriedades dos elementos químicos e sua periodicidade	Entender as diferenças de energias dos orbitais entre o átomo de hidrogênio e os elétrons nos átomos multieletrônicos; Relacionar o Modelo Padrão com a ordenação dos Elementos Químicos na Tabela Periódica; Explicar a periodicidade das propriedades dos elementos químicos na tabela periódica.	Leitura do texto preparado para a aula. Assistir às VIDEO- AULAS indicadas no texto.	Assíncrono: Teste 6 (Tópico 8)
9 15/11		FERIADO			
9 18/11	Tópico 9: Ligação química I	Ligações iônicas e sólidos iônicos; ligação covalente: valência, estrutura de Lewis, regra do octeto, carga formal, modelo de repulsão dos pares de elétrons da camada de valência.	Entender as limitações dos modelos de ligação química apresentados e reconhecer a importância da Teoria de Lewis para as ligações químicas; Construir as estruturas de Lewis para moléculas; Relacionar a estrutura de Lewis e a geometria molecular.	Leitura do texto preparado para a aula. Assistir às VIDEO- AULAS	Assíncrono: Teste 7 (Tópico 9)

				indicadas no texto.	
10 21/11 a 25/11	Tópico 10: Ligação química II	Teoria da ligação de valência, ligações s e p, hibridização de orbitais, teoria do orbital molecular.	Entender a teoria da ligação de valência; entender os tipos de ligação s e p; Entender a hibridização dos orbitais; Entender a teoria do orbital molecular; Compreender a diferença entre as teorias de ligação; Aplicar as teorias de ligação em moléculas simples.	Leitura do texto preparado para a aula. Assistir às VIDEO- AULAS indicadas no texto.	Assíncrono: Teste 8 (Tópico 10)
11 28/11 a 02/12	Tópico 11: Interações intermole- culares e materiais	Dipolo, interações de London, ligações de hidrogênio e sua importância na estruturação de diversos materiais.	Classificar as forças intermoleculares; Relacionar as forças intermoleculares com o estado físico dos compostos e a sua polaridade.	Leitura do texto preparado para a aula. Assistir às VIDEO- AULAS indicadas no texto.	Assíncrono: Teste 9 (Tópico 11)
12	Prova 2 (Tópicos 7 a 11)				
9/12	1.01a 2 (10pidos 1 a 11)				

Substitutiva P1 ou P2: **13/12** – No caso de ausências com comprovação.

Recuperação: 17/12 – Todo o conteúdo será cobrado. O conceito final será calculado como a média da nota da recuperação e a nota final antes da recuperação.