FIS-502 - ÓPTICA QUÂNTICA

(144h) - Turma: FIS50220222 (2022.2)

Prof. Fernando Semião (sala 1004 – bloco B)

Dados do Plano

Turma: FIS50220222

Carga Horária Total: 144h

Horário: 46M34

Pré-Requisitos: não há

Ementa: Coerência Quântica. Interação da Radiação com Sistemas atômicos (Modelo de Jaynes-Cummings, Fases Geométricas). Princípios do Laser. Eletrodinâmica Quântica de Cavidades. Campos Propagantes em Arranjos Ópticos (interferometria). Movimento Quantizado de íons aprisionados. Estados não Clássicos da Luz (Produção, Detecção e aplicações em metrologia). Reconstrução de Estados Quânticos. Paradoxo de EPR e teorema de Bell. Distribuições de quase-probabilidade no espaço de fase. Interação de Sistemas Quânticos com o Meio Ambiente. Efeitos Cooperativos. Aplicações Recentes da Óptica Quântica (Resfriamento a Laser, Condensação de Bose-Einstein, Processamento de Informação Quântica e Teletransporte Quântico). Outros tópicos a critério do professor.

Metodologia de Ensino e Avaliação

Metodologia: Aulas presenciais expositivas no quadro verde, duas provas principais e provas de recuperação e substitutiva. Com relação ao material bibliográfico, indicaremos livros que são padrão neste tipo de curso.

Procedimentos de Avaliação da Aprendizagem: Serão realizadas duas provas escritas P1 e P2 em sala de aula. Cada prova tem o peso de 50% da nota final NF, ou seja, NF=(P1+P2)/2.

Será aplicada a seguinte tabela de conversão NF para conceito:

$$4.0 \le NF < 5.0 (D)$$

$$5.0 \le NF \le 6.5 (C)$$

$$6,5 \le NF \le 8,5$$
 (B)

$$NF >= 8.5 (A)$$

Para quem tiver conceito final F ou D, é reservado o direito de fazer a prova de recuperação (REC) na data informada abaixo. Na REC cai a matéria de todo o quadrimestre. Quem tiver perdido a P1 ou P2 e apresentar atestado poderá solicitar uma prova substutiva (SUB) a ser realizada na data informada abaixo. Na SUB cai a matéria de todo o quadrimestre.

DATAS:

P1: 15/07/2022

P2: 26/08/2022

REC/SUB: 30/08/2022

Horário de atendimento: Quarta-feira das 14:00 as 16:00 em minha sala que fica no bloco B (sala 1004).

Cronograma de Aulas

Semana 01

08/06/2022: Introdução à disciplina

10/06/2022: Radiação eletromagnética e sua interação com a matéria na teoria clássica

Semana 02

15/06/2022: Radiação eletromagnética e sua interação com a matéria na teoria clássica

22/06/2022: Interação da radiação com a matéria na teoria semiclássica

Semana 03

24/06/2022: Interação da radiação com a matéria na teoria semiclássica

29/06/2022: Caracterização de radiação óptica

Semana 04

01/07/2022: Caracterização de radiação óptica

06/07/2022: Quantização do campo eletromagnético

Semana 05

08/07/2022: Quantização do campo eletromagnético

13/07/2022: Funções de quasiprobabilidade

Semana 06

15/07/2022: Prova I (escrita) em sala de aula

20/07/2022: Funções de quasiprobabilidade

Semana 07

22/07/2022: Interação da radiação com a matéria na teoria quântica

27/07/2022: Interação da radiação com a matéria na teoria quântica

Semana 08

29/07/2022: Interação da radiação com a matéria na teoria quântica

03/08/2022: Aspectos não-clássicos do campo eletromagnético

Semana 09

05/08/2022: Aspectos não-clássicos do campo eletromagnético

10/08/2022: Aspectos não-clássicos do campo eletromagnético

Semana 10

12/08/2022: Tópicos avançados

17/08/2022: Tópicos avançados

Semana 11

19/08/2022: Tópicos avançados

24/08/2022: Tópicos avançados

Semana 12

26/08/2022: Prova II.

30/08/2022: Prova REC/SUB toda a matéria (escrita) em sala de aula.

Referências

Básicas

Introductory Quantum Optics, C. C. Gerry and P. L. Knight, Cambridge University Press.

Quantum Optics, D.F. Walls, and Gerard J. Milburn, Springer-Verlag Berlin Heidelberg.

Quantum Optics, M. O. Scully and M. S. Zubairy, Cambridge University Press.

Optical Coherence and Quantum Optics, L. Mandel and E. Wolf, Cambridge University Press.

Complementares

Quantum Theory of Light, R. Loudon, Oxford Science Publications.

Principles of Laser Spectroscopy and Quantum Optics, P. R. Berman and V. S. Malinovsky, Livros Técnicos e Científicos Editora. Princeton University Press.

Exploring the Quantum – Atoms, Cavities and Photons, S. Haroche and J. -M. Raimond, Oxford Science Publications.