



Caracterização da disciplina											
Código da discipl	Nome da disciplina:		Mecânica Quântica I								
Créditos (T-P-I): (6-0-10)		Carga horária: 6 horas		Aula prática: x Câmpu		JS:	s: Santo André				
Código turma: DANHT3072 -15SA		Turma:	Α	Turno:	D	Qua	drir	nestre:	1	Ano:	2021
Docente(s) responsável(is):			João Nuno Barbosa Rodrigues								

Alocação das turmas							
	Segunda	Terça	Quarta	Quinta	Sexta	Sábado	
8:00 - 9:00	Aula	Aula Aula					
9:00 - 10:00	Síncrona ⁽¹⁾	Síncrona ⁽¹⁾					
10:00 - 11:00				Aula	Hora de Atendimento ⁽²⁾		
11:00 - 12:00				Síncrona ⁽¹⁾			
12:00 - 13:00							
13:00 - 14:00							
14:00 - 15:00							
15:00 - 16:00							
16:00 - 17:00							
17:00 - 18:00							
18:00 - 19:00							
19:00 - 20:00							
20:00 - 21:00							
21:00 - 22:00							
22:00 - 23:00							

⁽¹⁾ As aulas síncronas serão gravadas e disponibilizadas na página moodle da disciplina (através do Youtube). A participação nas aulas **não é obrigatória**.

⁽²⁾ Nestes horários o atendimento será feito através de vídeo-chamada ou através do chat moodle.

Plano de Ensino - Quadrimestre 2021.1

Planejamento da disciplina

Objetivos gerais

Introduzir os alunos ao estudo de problemas quânticos usando as ferramentas conceptuais e matemáticas canónicas da Mecânica Quântica.

Objetivos específicos

Adquirir intuição, conhecimento e destreza matemática na análise de sistemas físicos envolvendo:

- 1- As propriedades básicas do mundo quântico.
- 2- O formalismo matemático canónico da Mecânica Quântica.
- 3- Os postulados da Mecânica Quântica.
- 4- Quantificação canónica de sistemas simples como o Oscilador Harmónico Quântico.
- 5- Simetrias em Mecânica Quântica.
- 6- Momento angular.
- 7- Partícula quântica num potencial central.

Ementa

Estrutura matemática da Mecânica Quântica (notação de Dirac, espaços de Hilbert discretos e contínuos). Postulados da Mecânica Quântica. Princípio de incerteza. Problemas unidimensionais e sistemas de dois níveis. Oscilador harmónico quântico e suas aplicações. Simetrias em mecânica quântica (translação espacial e temporal, paridade, rotações). Momento angular. Potencial central. Átomo de Hidrogénio.

Plataforma Web

A disciplina irá ser ministrada através da plataforma moodle da UFABC, acessível através do endereço **moodle.ufabc.edu.br**. Nesta plataforma a disciplina é identificada como "**Mecânica Quântica I - 2021.1**".

Conteúdo programático						
Semana	Datas	Conteúdo	Estratégias didáticas	Avaliação		
1	1/Fev	Apresentação da Disciplina (informações sobre ementa, provas, conceitos, etc). Revisão de conceitos básicos de Física Clássica.	Exposição teórica (aula síncrona).			
	2/Fev	Resolução de exercícios (Folha 1 - Mecânica Clássica).	Resolução de exercícios (aula síncrona).			
	4/Fev	Propriedades quânticas fundamentais.	Exposição teórica (aula síncrona).			
2	8/Fev	Interpretação de Copenhaga. Princípio da Incerteza de Heisenberg. Regime de	Exposição teórica (aula			

		aplicabilidade da Mecânica Quântica.	síncrona).	
	9/Fev	Resolução de exercícios (Folha 2 - Propriedades quânticas fundamentais).	Resolução de exercícios (aula síncrona).	
	11/Fev	Equação de Schrodinger e evolução de uma função de onda. Trem de ondas e sua evolução.	Exposição teórica (aula síncrona).	
	15/Fev	Feriado de Carnaval.	-	
3	16/Fev	Feriado de Carnaval.	-	
	18/Fev	Potenciais 1D independentes do tempo.	Exposição teórica (aula síncrona).	
	22/Fev	Resolução de exercícios (Folha 3 - Potenciais 1D independentes do tempo).	Resolução de exercícios (aula síncrona).	
4	23/Fev	Formalismo matemático da Mecânica Quântica: Espaço vectorial das funções de onda \mathscr{F} , produto interno em \mathscr{F} , operadores lineares em \mathscr{F} e bases de \mathscr{F} .	Aula teórica expositiva (síncrona).	
	25/Fev	Formalismo matemático da Mecânica Quântica: Espaço de estados & e espaço dual &*, notação de Dirac, operadores lineares em & e representações em &.	Aula teórica expositiva (síncrona).	
	24/Fev a 2/Mar	<u>Avaliação</u> : Lista de Exercícios 1.		Questões dissertativas e de cálculo.
5	1/Mar	Formalismo matemático da Mecânica Quântica: Equações de auto-valores, observáveis, CCOCs, representações r > e p >, produto tensorial no espaço de estados.	Aula teórica expositiva (síncrona).	
	2/Mar	Resolução de exercícios (Folha 4 - Formalismo Matemático da Mecânica Quântica).	Resolução de exercícios (aula síncrona).	

	4/Mar	Postulados da Mecânica Quântica e suas implicações físicas.	Aula teórica expositiva (síncrona).	
	8/Mar	llustração dos postulados com uma experiência. Sistemas de dois níveis.	Aula teórica expositiva (síncrona).	
6	9/Mar	Resolução de exercícios (Folha 5 - Postulados da Mecânica Quântica).	Resolução de exercícios (aula síncrona).	
	11/Mar	Variáveis compatíveis e incompatíveis. Regras de quantificação canónica. Exemplo de quantificação canónica: Oscilador Harmónico Quântico 1D.	Aula teórica expositiva (síncrona).	
	15/Mar	Exemplo de quantificação canónica: Oscilador Harmónico Quântico 1D (continuação).	Aula teórica expositiva (síncrona).	
7	16/Mar	Aula de revisões e dúvidas para a Prova 1.	Esclarecimento de dúvidas (aula síncrona).	
	18/Mar	Resolução de exercícios para a Prova 1.	Resolução de exercícios (aula síncrona).	
	18/Mar a 21/Mar	<u>Avaliação</u> : Prova #1		Questões dissertativas e cálculo.
	22/Mar	Exemplo de quantificação canónica: Oscilador Harmónico Quântico 2D.	Aula teórica expositiva (síncrona).	
8	23/Mar	Resolução de exercícios (Folha 6 - Osciladores Harmónicos Quânticos).	Resolução de exercícios (aula síncrona).	
	25/Mar	Exemplo de quantificação canónica: Problema de Landau.	Aula teórica expositiva (síncrona).	
	26/Mar a 30/Mar	<u>Avaliação</u> : Lista de Exercícios 2.		Questões dissertativas e cálculo.
9	29/Mar	Resolução de exercícios (Folha 7 - Movimento num campo electromagnético).	Resolução de exercícios (aula síncrona).	

	30/Mar	Simetrias em Mecânica Quântica: simetrias contínuas.	Aula teórica expositiva (síncrona).	
	1/Abr	Simetrias em Mecânica Quântica: simetrias discretas.	Aula teórica expositiva (síncrona).	
	5/Abr	Resolução de exercícios (Folha 8 - Simetrias em Mecânica Quântica).	Resolução de exercícios (aula síncrona).	
10	6/Abr	Teoria Geral do Momento Angular.	Aula teórica expositiva (síncrona).	
	8/Abr	Feriado de Santo André.	-	
	9/Abr a 13/Abr	<u>Avaliação</u> : Lista de Exercícios 3.		Questões dissertativas e cálculo.
	12/Abr	Momento Angular Orbital, seus auto-estados e auto-valores.	Aula teórica expositiva (síncrona).	
11	13/Abr	Resolução de exercícios (Folha 9 - Momento Angular).	Resolução de exercícios (aula síncrona).	
	15/Abr	Problema do átomo de Hidrogénio (sem spin). Auto-energias e auto-estados do átomo de Hidrogénio.	Aula teórica expositiva (síncrona).	
	16/Abr a 20/Abr	<u>Avaliação</u> : Lista de Exercícios 4.		Questões dissertativas e cálculo.
	19/Abr	Problema do átomo de Hidrogénio (sem spin) num campo magnético constante (efeito de Zeeman).	Aula teórica expositiva (síncrona).	
12	20/Abr	Resolução de exercícios (Folha 10 - Movimento num campo de forças central).	Resolução de exercícios (aula síncrona).	_
	22/Abr	Aula de revisões, dúvidas e resolução de exercícios para a Prova 2.	Dúvidas e exercícios (aula síncrona).	

Plano de Ensino - Quadrimestre 2021.1

13	27/Abr ^(a)	Resolução de exercícios para a Prova 2.	Resolução de exercícios (aula síncrona).	
13	27/Abr a 30/Abr	<u>Avaliação</u> : Prova #2		Questões dissertativas e cálculo.
14	4/Maio ^(b)	Aula de revisões, dúvidas e resolução de exercícios para a Prova de Recuperação.	Dúvidas e exercícios (aula síncrona).	
	4/Maio a 7/Maio	<u>Avaliação</u> : Prova de Recuperação.		Questões dissertativas e cálculo.

⁽a) Como a Prova 2 começa ao final de terça-feira (27/Abr), caso todos os alunos estejam de acordo, esta aula de resolução de exercícios poderá ser reagendada para segunda-feira (26/Abr).

Descrição dos instrumentos e estratégias didáticas para as aulas

Os <u>conteúdos teóricos</u> da disciplina serão ministrados sincronamente em aulas realizadas através de chamada de vídeo. A matéria será exposta através de anotações manuscritas feitas ao longo da aula (emulando uma "aula em lousa"). Cada aula durará em torno de duas horas. Ocasionalmente poderá ser necessário gravar uma vídeo-aula assíncrona.

Semanalmente teremos uma aula de <u>resolução de exercícios</u>, também ministrada sincronamente, onde os exercícios serão resolvidos e comentados também emulando "aula em lousa". Ocasionalmente poderá ser necessário gravar uma vídeo-aula assíncrona.

A presença nas aulas síncronas **não é obrigatória**.

As aulas síncronas serão gravadas e disponibilizadas na página Moodle da disciplina (como link para vídeo no YouTube). Os PDFs das anotações feitas ao longo das aulas serão também disponibilizados na página da disciplina no Moodle.

Descrição dos instrumentos para o atendimento aos alunos

Semanalmente teremos um horário de esclarecimento de dúvidas (de 2 horas). Durante esse horário o professor estará disponível online numa chamada de vídeo, na qual os alunos poderão entrar sempre quiserem. O link para essas chamadas de vídeo será disponibilizado na página da disciplina no Moodle.

Os alunos poderão também colocar dúvidas através do chat do moodle e/ou e-mail fora destes horários. No entanto, em tais casos o retorno poderá demorar um pouco mais de tempo.

Nota: Em princípio teremos também um aluno de mestrado em Física que, no contexto da disciplina de

⁽b) A aula de revisão e dúvidas para a Prova de Recuperação apenas se realizará caso um ou mais alunos estejam em posição de realizar a Prova de Recuperação (ver em baixo secção "Prova de Recuperação").

Plano de Ensino - Quadrimestre 2021.1

Estágio Docente I, fará monitoria (em horários ainda a determinar).

Descrição dos instrumentos e critérios de avaliação qualitativa

Conceito Final

A nota final (NF) será dado por

$$NF = 0.15*EX1 + 0.10*(EX2+EX3+EX4) + 0.25*P1 + 0.30*P2$$

onde

EX1 = Listas de Exercícios 1 (disseratativa e cálculo).

EX2 = Listas de Exercícios 2 (disseratativa e cálculo).

EX3 = Listas de Exercícios 3 (disseratativa e cálculo).

EX4 = Listas de Exercícios 4 (disseratativa e cálculo).

P1 = Prova #1 (dissertativa e cálculo).

P2 = Prova #2 (dissertativa e cálculo).

Conceitos Finais:

- Conceito A: 8,5 ≤ NF ≤ 10,0.
- Conceito B: 7,0 ≤ NF < 8,5.
- Conceito C: 5,0 ≤ NF < 7,0.
- Conceito D: 4,0 ≤ NF < 5,0.
- Conceito F: 0,0 ≤ NF < 4,0.

Formato dos componentes da avaliação

<u>Listas de Exercícios (EX)</u>:

- Com questões dissertativas e de cálculo mais longas (com uma semana para entrega).
- As Listas realizar-se-ão nas seguintes datas: Lista #1 entre <u>24/Fev-2/Mar</u>; Lista #2 entre <u>26-</u> 30/Mar; Lista #3 entre 9-13/Abr; Lista #4 entre 16-20/Abr.
- Estas listas visam não só solidificar os conceitos/ferramentas discutidos nas aulas, mas também permitir que os alunos explorem tópicos não abordados nas aulas.

Provas (P1 e P2):

- Com guestões dissertativas e de cálculo.
- Realizadas através da plataforma Moodle.
- A P1 cobrirá a primeira parte da matéria e será realizada entre <u>18-21/Mar</u>.
- A P2 cobrirá toda a matéria (mais enfoque na segunda parte) e será realizada nos dias 27-30/Abr.

Prova de Recuperação

A prova de recuperação (REC) terá lugar no dias **4-7/Maio**. Ela cobrirá todo o conteúdo da disciplina. Esta poderá ser feita pelos alunos que obtiverem conceitos D e F. A nota final (NFrec), neste caso, será dada pela fórmula:

$$NFrec = max(0.5*NF + 0.5*REC, NF)$$

aplicando-se a mesma conversão para conceitos finais indicada na secção "Conceito Final".

Plano de Ensino - Quadrimestre 2021.1

Critérios de Presença

O curso exige presença mínima. Esta corresponde à realização de actividades de avaliação com peso combinado maior do que 50% – ver composição do conceito final acima.

Referências bibliográficas básicas

- 1. C. Cohen-Tannoudji, Quantum Mechanics, Vol.1, Wiley Interscience.
- 2. J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley Publishing Company.
- 3. R. Shankar, Principles of Quantum Mechanics (second edition), Plenum Press.

Referências bibliográficas complementares

- 1. C. Cohen-Tannoudji, Quantum Mechanics, Vol. 2, Wiley Interscience.
- 2. L. Ballentine, Quantum Mechanicsm a modern development, World Scientific. .
- 3. A. Peres, Quantum Theory Concepts & Methods, Kluwer Academic Pub.
- 4. R. P. Feynman, The Feynman Lectures on Physics, Vol. 3.
- 5. L. Schiff, Quantum Mechanics, McGraw-Hill Book Company.
- 6. D. Griffiths, Introduction to Quantum Mechanics, Prentice Hall.