Plano de Ensino e Mapa de Atividades

Disciplina: BCK0104-15 Interações Atômicas e Moleculares (2 turmas)

Docente: Gustavo Morari do Nascimento

Quadrimestre: Suplementar **Carga horária total prevista**: 36 + 0 + 48 = 84

RECOMENDAÇÃO: Transformações Químicas; Física Quântica

OBJETIVOS: Apresentar o uso da teoria quântica na compreensão das propriedades microscópicas da matéria, das forças de interação entre átomos e moléculas e das formas de estruturação da matéria, suas consequências e aplicações tecnológicas.

EMENTA: Fundamentos quânticos de ligação química; Teoria da ligação de valência; Teoria do Orbital Molecular; Interações Elétricas entre moléculas; Interações moleculares em líquidos; Introdução à física da matéria condensada: Estruturas Cristalinas, Teoria de bandas e propriedades dos materiais.

Metodologia:

A disciplina será conduzida no Google Classroom e na medida do possível avisos importantes também serão colocados no SIGAA.

Código do curso no Google Classroom: b62bctw

Link: https://classroom.google.com/u/0/c/MTQ1MTA0MzlyNDEx

As interações síncronas serão realizadas via google meet.

As atividades serão, em resumo, organizadas da seguinte maneira:

Segunda-feira: Disponibilização do material da semana toda (na medida do possível irei disponibilizar o material na sexta-feira anterior a semana de aula) - atividade assíncrona.

Quarta-feira: Encontro com o professor (às quartas-feiras a cada quinze dias no horário das aulas) - atividade síncrona.

Procedimentos de Avaliação da Aprendizagem:

A avaliação será composta da entrega de itens selecionados de três listas de exercícios, uma (P) prova e um (T) projeto em grupo. As listas ficaram disponíveis duas semanas antes da entrega e a prova ficará disponível por **72 horas** no google classroom e o projeto tem suas etapas de execução previstas no mapa de atividades abaixo. O Projeto consistirá no desenvolvimento de uma mídia (podcast ou vídeo aula) ou página na wiki sobre algum tema relacionado à ementa da disciplina. Nota final = (ML + P + T)/3, sendo ML a média aritmética das notas dos exercícios entregues das listas.

O conceito será atribuído conforme as seguintes porcentagens de aproveitamento: A (85 - 100%), B (70 - 85%), C (50 - 70%), D (40 - 50%), F (<40%). O estudante que obtiver média D ou F terá o direito de realizar uma prova de recuperação (REC). O conceito final será determinado pela seguinte média ponderada: (NF+2*REC)/3.

Horas	Tema principal	Objetivos específicos	Atividades práticas			
Tempo de dedicação?	O que eles aprenderão?	Quais objetivos de aprendizagem devem ser alcançados?	Como demonstrarão?			
Setembro						
1º semana (21-23/09) T + I 3 + 4 = 7	Apresentação do curso e Revisão de conceitos básicos de física quântica	Relembrar importantes conceitos para a melhor compreensão do curso	Síncrono: Apresentação do curso (no horário da aula na quarta-feira) Assíncrono: Ouvir os conteúdos do podcast e dos arquivos disponibilizados para leitura e estudo -Lista de exercícios 1 (L1)			
2º semana (28-30/09) T + I 3 + 4 = 7	Revisão de conceitos básicos de mecânica quântica	Relembrar importantes conceitos para a melhor compreensão do curso	Assíncrono: Ouvir os conteúdos do podcast e dos arquivos disponibilizados para leitura e estudo			
Outubro						
3º semana (05-07/10) T+I 3+4=7	Quantização do momento angular e da energia do átomo de hidrogênio. Orbitais atômicos	Entender os orbitais do átomo de hidrogênio. Conhecer os números quânticos e suas interpretações.	Síncrono: Sala de aula do Google Meet para discussão dos conteúdos disponibilizados nos textos e nos podcasts e esclarecimento de dúvidas sobre os exercícios propostos (no horário da aula na quarta-feira) Assíncrono: Ouvir os conteúdos do podcast e dos arquivos disponibilizados para leitura e estudo			
4º semana (12-14/10) T + I 3 + 4 = 7	Spin do elétron. Princípio da exclusão de Pauli. Regras de seleção. Átomos multieletrônicos. Tabela periódica	Entender o spin do elétron e o princípio da exclusão, conseguir determinar a configuração eletrônica dos elementos.	Assíncrono: Ouvir os conteúdos do podcast e dos arquivos disponibilizados para leitura e estudo -Lista de exercícios 2 (L2) (Entrega de itens selecionados da L1)			
5° semana (19-21/10) T + I 3 + 4 = 7	Fundamentos Mecânico quânticos da teoria (aproximação de Born- Oppenheimer). Teoria da	Entender a aproximação de Born- Oppenheimer e os conceitos básicos da teoria da ligação de valência.	Síncrono: Sala de aula do Google Meet para discussão dos conteúdos disponibilizados nos textos e nos podcasts e esclarecimento de dúvidas sobre os exercícios propostos			

	ligação de valência, moléculas diatômicas e poliatômicas.		(no horário da aula na quarta-feira) Assíncrono: Ouvir os conteúdos do podcast e dos arquivos disponibilizados para leitura e estudo		
6º semana (26-28/10) T + I 3 + 4 = 7	Teoria do Orbital molecular: Combinações lineares de orbitais atômicos. Moléculas diatômicas.	Entender os conceitos básicos da teoria do orbital molecular, conseguir determinar a configuração eletrônica das moléculas diatômicas homonucleares dos primeiros dois períodos.	Assíncrono: Ouvir os conteúdos do podcast e dos arquivos disponibilizados para leitura e estudo		
Novembro					
7º semana (02-04/11) T + I 3 + 4 = 7	Teoria do Orbital molecular: Extensão	Entender os conceitos básicos do princípio variacional e algumas aplicações simples.	Assíncrono: Ouvir os conteúdos do podcast e dos arquivos disponibilizados para leitura e estudo -Lista de exercícios 3 (L3) (Entrega de itens selecionados da L2)		
8º semana (09-11/11) T + I 3 + 4 = 7	Estado sólido	Conhecer as estruturas principais de metais, sais, outros materiais cristalinos e alguns materiais não- cristalinos, saber calcular o fator de empacotamento.	Síncrono: Sala de aula do Google Meet para discussão dos conteúdos disponibilizados nos textos e nos podcasts e esclarecimento de dúvidas sobre os exercícios propostos (no horário da aula na quarta-feira) Assíncrono: Ouvir os conteúdos do podcast e dos arquivos disponibilizados para leitura e estudo		
9º semana (16-18/11) T + I 3 + 4 = 7	Estado sólido	Entender os conceitos de condutores, semicondutores e isolantes, e conhecer algumas aplicações de semicondutores dopados. Polímeros Condutores.	Assíncrono: Ouvir os conteúdos do podcast e dos arquivos disponibilizados para leitura e estudo		
10º semana	Estado sólido	Técnicas de caracterização da	(Entrega de itens selecionados da L3)		

(23-25/11) T + I 3 + 4 = 7		estrutura do estado sólido	Síncrono: Sala de aula do Google Meet para discussão dos conteúdos disponibilizados nos textos e nos podcasts e esclarecimento de dúvidas sobre os exercícios propostos Assíncrono: Ouvir os conteúdos do podcast e dos arquivos disponibilizados para leitura e estudo
Dezembro			
11º semana (30-02/12) T + I 3 + 4 = 7	Prova 1	Questões sobre os conceitos centrais do curso.	P1- será disponibilizada no domingo para entrega na quarta-feira (prazo máximo) Entrega dos trabalhos em grupo (T)
12º semana (07-09/12) T + I 3 + 4 = 7	Avaliação do curso		Síncrono: Sala de aula do Google Meet para avaliação do curso.
Recuperação (13-18/12)	Recuperação		R- Será disponibilizada no domingo para entrega na quarta-feira (prazo máximo)

Bibliografia

- TIPLER, P. A., LLEWELLYN, R.A., Física Moderna, Grupo Editorial Nacional (GEN) -LTC (2010).
- LEVINE, Ira N. Quantum chemistry. 6. ed. Harlow, USA: Prentice Hall, 2008. 751 p.
- ATKINS, Peter; DE PAULA, Julio. Physical chemistry. 8. ed. New York: Oxford University Press, 2006. 1064p.

BIBLIOGRAFIA COMPLEMENTAR

- EISBERG, Robert et al. Física quântica: átomos, moléculas, sólidos, núcleos e partículas. Rio de Janeiro: Câmpus, 1979. 928p.
- FEYNMAN, Richard P. et al. Lições de Física de Feynman. Porto Alegre: Bookman 2008. 416 p. GASIOROWICZ, Stephen. Quantum Physics. Hoboken, USA: Wiley 2003. 336 p.
- MCQUARRIE, Donald A. et al. Physical chemistry: a molecular approach. Sausalito, USA: University Science Books 1997. 1349 p.
- PAULING, Linus et al. Introduction to quantum mechanics: with applications to chemistry. New York, USA: Dover 1935.
- LEE, J. D. Química Inorgânica Não tão Concisa, Ed. Edgard Blücher LTDA, tradução da 4º edição inglesa, 1996.
- ATKINS, P.; DE PAULA, J.; FRIEDMAN, R. Quanta, Matéria e Mudança, uma abordagem molecular para a Físico-Química vol. 1 e 2, Tradução da 1º edição inglesa. Ed. LTC, 2011.
- LEVINE, I. N. Físico-Química vol. 1 e 2, Tradução da 6º edição inglesa. Ed. LTC 2012.
- CARUSO, Francisco; OGURI, Vitor. Física Moderna: origens clássicas e fundamentos quânticos. Rio de Janeiro: Elsevier, 2006.