

Universidade Federal do ABC Centro de Ciências Naturais e Humanas Bacharelado em Química

Elaine Teixeira Veiga

EFEITO DE ALGUNS SUBSTITUINTES DA 1,10-FENANTROLINA NO pK_a DE COMPLEXOS *TRIS*-HETEROLÉPTICOS DE RUTÊNIO(II)

Santo André - SP

Elaine Teixeira Veiga

EFEITO DE ALGUNS SUBSTITUINTES DA 1,10-FENANTROLINA NO pK_a DE COMPLEXOS *TRIS*-HETEROLÉPTICOS DE RUTÊNIO(II)

Trabalho de Conclusão de Curso em Química

Trabalho apresentado à Universidade Federal do ABC como pré-requisito para obtenção de grau de Bacharel em Química

Orientador: Prof. Dr. André Sarto Polo

Santo André - SP

2016

Elaine Teixeira Veiga

EFEITO DE ALGUNS SUBSTITUINTES DA 1,10-FENANTROLINA NO pK_a DE COMPLEXOS *TRIS*-HETEROLÉPTICOS DE RUTÊNIO(II)

Trabalho apresentado à Universidade Federal do ABC como pré-requisito para obtenção de grau de Bacharel em Química

Santo André, 27 de abril de 2016

Aluna: Elaine Teixeira Veiga

Orientador: Prof. Dr. André Sarto Polo

RESUMO

Compostos tris-heterolépticos de rutênio(II) do tipo cis-[Ru(R-phen)(dcbH₂)L₂], R-phen = 1,10-fenantrolina e derivados, $dcbH_2 = \dot{a}cido-4,4'-dicarboxílico-2,2'-bipiridina e L = NCS^- ou Cl^$ podem ter várias de suas propriedades finamente moduladas de acordo com os ligantes utilizados. Neste trabalho, avaliou-se como substituintes com caráter doador ou aceptor de elétrons da 1,10fenantrolina influenciam no pKa destes compostos e dos ligantes R-phen. O efeito do ligante L nos compostos de rutênio(II) também foi analisado. A determinação dos valores de pKa dos complexos e dos ligantes R-phen foi realizada por meio de titulações espectrofotométricas em soluções alcoólicas. Os valores de pKa determinados para os ligantes seguiram uma ordem crescente conforme o caráter doador do substituinte R (Ph₂ < H < Me₂ < Me₄): pK_a = 3,43 \pm 0,06, $3,64 \pm 0,01, 4,66 \pm 0,05$ e $5,10 \pm 0,07$. Nos compostos de rutênio(II), a presença do ligante NCS⁻, parece aumentar ligeiramente o valor de pKa em relação aos compostos com ligante Cl, conforme pode ser observado nos compostos cis-[Ru(R-phen)(dcbH₂)(NCS)₂], R= Ph₂ (pK_a = $3,15 \pm 0,05)$ e R = Me₄ (pK_a = $3,23 \pm 0,01$), e *cis*-[Ru(R-phen)(dcbH₂)Cl₂], R= Ph₂ (pK_a = 2,971 \pm 0,001) e R = Me₄ (pK_a = 3,02 \pm 0,08). Apesar desta pequena variação, em geral, os valores de pK_a determinados para os compostos de rutênio(II), dentro dos desvios das medidas, resultaram em um mesmo valor de pKa. Isto pode ser atribuído à distância entre o substituinte e o grupo protonado; nos ligantes esta distância é menor quando comparada à distância do substituinte ao ácido carboxílico dos compostos de rutênio(II).

Palavras-chave: Compostos *tris*-heterolépticos de rutênio(II), pK_a, constante de dissociação, titulação espectrofotométrica, cálculos iterativos.

SUMÁRIO

1	INTRODUÇÃO	6	
2	OBJETIVOS	9	
3	METODOLOGIA	10	
3.1	Reagentes	10	
3.2	Medidas espectrofotométricas e de pH	10	
3.3	Determinação do pK _a dos Compostos	11	
3.4	Tratamento de Dados - Determinação dos valores de pKa	12	
4	RESULTADOS E DISCUSSÃO	12	
4.1	Medidas Espectrofotométricas e de pH	12	
4.2	Determinação dos valores de pK _a dos ligantes	15	
4.3	Determinação do pK _a dos complexos de rutênio(II)	21	
4	CONCLUSÕES	25	
5	REFERÊNCIAS	26	
AP	ÊNDICE A - Espectros de absorção, curvas de titulação e regressão linear para os		
liga	ntes R-phen	30	
APÊNDICE B - Espectros de absorção, curvas de titulação e regressão linear para os			
compostos cis -[Ru(R-phen)(dcbH ₂)L ₂], L = NCS ⁻ ou Cl ⁻			

LISTA DE COMPOSTOS

Nome	Abreviatura	Estrutura
Ácido-4,4'-dicarboxílico- 2,2'-bipiridina	dcbH ₂	о о но N
1,10-fenantrolina	phen	
4,7-dimetil-1,10-fenantrolina	Me ₂ -phen	
3,4,7,8-tetrametil-1,10- fenantrolina	Me ₄ -phen	
4,7-difenil-1,10-fenantrolina	Ph ₂ -phen	

1 INTRODUÇÃO

Compostos de coordenação possuem intensa absorção na região visível do espectro, estabilidade química e atividades redox e catalítica que podem ser moduladas de acordo com os seus ligantes, o que os torna interessantes para diversas aplicações, como por exemplo, em fotocatálise (Ohzu, Ishizuka et al. 2013; Boston, Pachón et al. 2014; He, Li et al. 2014), células solares (Polo, Itokazu et al. 2004; Inagaki and Akita 2010), fios moleculares (Olivier, Kim et al. 2008; Grelaud, Gauthier et al. 2014), sensores (Yue, Zhu et al. 2015), obtenção de imagens celulares (Zhang, Ye et al. 2012), tratamento de câncer (Yadav, Janaratne et al. 2013; Yu, Liu et al. 2014), entre outras.

O uso destes compostos como sensibilizadores em Células Solares Sensibilizadas por Corantes (DSSCs, *Dye-Sensitized Solar Cells*) tem atraído bastante atenção nas últimas décadas (Rees and Baranoff 2014; Ye, Wen et al. 2015). Nestes dispositivos, o corante possui um papel fundamental, atuando na captura da luz solar e injeção de elétrons na banda de condução do semicondutor, ao qual está quimicamente ligado (Yin, Velayudham et al. 2012).

O corante sensibilizador *cis*-[Ru(dcbH₂)₂(NCS)₂], N3, Figura 1, ganhou amplo destaque após sua publicação em 1993, devido ao seu alto desempenho em DSSCs (Nazeeruddin, Kay et al. 1993). Sua estrutura é bastante apropriada para ser utilizada em DSSCs, possuindo dois ligantes dcbH₂ que permitem o ancoramento do corante à superfície do semicondudor e dois grupos isotiocianato responsáveis pela estabilização dos orbitais t_{2g} . Devido ao seu desempenho, o N3 é utilizado como modelo para o desenvolvimento de novos corantes, devido a possibilidade de modular as propriedades dos compostos por meio da mudança de um dos ligantes dcbH₂ por outro ligante polipiridínico (Nazeeruddin, Zakeeruddin et al. 2004; Nazeeruddin, Bessho et al. 2007; Lemercier, Bonne et al. 2008; Zhang and Cole 2015).

Figura 1 – Estrutura do N3 e seus equilíbrios de desprotonação formando respectivamente, N719 e N712.

Diferentes ligantes auxiliares baseados na 2,2'-bipiridina foram empregados em compostos do tipo *cis*-[Ru(dcbH₂)(NN)(NCS)₂], NN = ligante polipiridínico, entretanto poucos trabalhos empregaram a 1,10-fenantrolina e seus derivados (Fan, Zhang et al. 2010; Sun, Onicha et al. 2010; Carvalho, Liandra-Salvador et al. 2014). Este ligante é similar à 2,2'-bipiridina, mas possui a vantagem de apresentar uma cadeia π -conjugada mais extensa, o que aumenta a absorção de luz na região do visível. Além disso, uma série de estudos têm mostrado o efeito de substituintes nas propriedades eletrônicas e ópticas de ligantes e compostos de rutênio(II) (Horvath and Gordon 2011; van der Salm, Elliott et al. 2015). Desta forma, derivados da 1,10-fenantrolina com substituintes com diferentes propriedades doadoras/aceptoras de elétrons podem ser utilizados de forma a modular as propriedades dos compostos sintetizados, tendo impacto direto em seu comportamento em células solares sensibilizadas por corantes (Onozawa-Komatsuzaki, Kitao et al. 2006; Müller, Mendonça et al. 2015).

A mudança no grau de protonação do ligante $dcbH_2$ também influencia diretamente nas propriedades dos compostos, como no espectro de absorção, rendimentos quânticos de emissão, tempo de vida do estado excitado e propriedades redox, bem como em seu desempenho nas DSSCs (Sun, Onicha et al. 2010; Souza, Andrade et al. 2013). O corante N719, análogo duplamente desprotonado do N3, apresenta um desempenho melhor quando comparado à espécie protonada, N3 ou completamente desprotonada, N712, Figura 1 (Nazeeruddin, Humphry-Baker et al. 2003; Nazeeruddin, Baranoff et al. 2011). A fim de entender a relação do seu estado de protonação com a eficiência do processo de sensibilização, injeção de elétrons e rendimentos das células solares, diversos estudos das características ácido-base de compostos de rutênio(II) vêm sendo realizados (Nazeeruddin, Zakeeruddin et al. 1999; Nazeeruddin, Zakeeruddin et al. 2000; Tachibana, Nazeeruddin et al. 2002; Kilså, Mayo et al. 2004; Wächtler, Kupfer et al. 2011; Pizzoli, Lobello et al. 2012). Nazeeruddin, por exemplo, determinou inicialmente os valores de pK_a para o N3 como 3,0 e 1,5, além de investigar como o estado de protonação influencia em seu desempenho em DCCS (Nazeeruddin, Zakeeruddin et al. 1999).

Diversas técnicas tais como potenciometria, condutimetria, espectrofotometria e ressonância magnética nuclear podem ser utilizadas para a determinação da constante de dissociação ácida a fim de compreender as propriedades ácido-básicas de compostos. A determinação é baseada na variação de alguma propriedade do composto analisado medida com a técnica com o pH do meio, de forma que a correlação entre elas permita a determinação do pK_a. Embora a potenciometria seja uma das técnicas mais utilizadas devido a sua simplicidade e baixo custo, o uso da titulação espectrofotométrica é bastante útil para compostos que possuem grupos cromóforos, como nos complexos estudados, além de possibilitar o uso de soluções com concentrações menores. A presença de grupos cromóforos próximos ao grupo ácido possibilita

que as espécies protonada e não-protonada apresentem diferentes espectros de absorção, sendo possível fazer a determinação do pK_a dos H ácidos da molécula (Jetse Reijenga 2013).

Desta maneira, a titulação espectrofotométrica é uma excelente técnica para determinar as constantes de dissociação ácida dos compostos *cis*-[Ru(R-phen)(dcbH₂)L₂], uma vez que estes possuem intensa absorção na região do UV-vis (Müller, Mendonça et al. 2015).

Assim, neste trabalho, foram determinados os pK_as para diferentes ligantes R-phen por meio da titulação espectrofotométrica bem como dos compostos *cis*-[Ru(R-phen)(dcbH₂)L₂], R = H, CH₃ ou Ph; L = Cl⁻ ou NCS⁻, a fim de verificar como as propriedades doadoras/aceptoras de elétrons dos substituintes influenciam nas características ácido-básicas dos ligantes dcbH₂.

2 OBJETIVOS

Verificar a maneira com que a presença de substituintes nas posições 3, 4, 7 e 8 da 1,10fenantrolina afeta os valores de pK_a de compostos *tris*-heterolépticos de rutênio(II) do tipo *cis*-[Ru(R-phen)(dcbH₂)L₂], R = CH₃, H, ou Ph e L = Cl⁻ ou NCS⁻, Figura 2, visando estabelecer uma relação entre a identidade do ligante e as propriedades ácido/base dos hidrogênios do grupo carboxílico. Além disso, verificar o efeito dos substituintes no pK_a dos ligantes derivados da 1,10-fenantrolina e assim, comparar com aqueles determinados para os compostos de rutênio(II).

Figura 2 - Estrutura geral dos compostos *cis*-[Ru(R-phen)(dcbH₂)L₂], $\mathbf{R} = CH_3$, H, ou Ph e $\mathbf{R} = H$, ou $\mathbf{R} = \mathbf{R} = CH_3$.

3 METODOLOGIA

3.1 Reagentes

HCl (Synth, 36,5-38,0%), HNO₃ (Sigma Aldrich, 65%), NaOH (Sigma-Aldrich, 98%), NaNO₃ (Sigma-Aldrich, 99,5%), NaCl (Sigma-Aldrich, 99,8%), etanol (Merck, 99,9%), 1,10fenantrolina (Strem Chemicals, 99%), 4,7-dimetil-1,10-fenantrolina (Alfa Aesar, 98%), 4,7difenil-1,10-fenantrolina (Sigma-Aldrich, 97%), 3,4,7,8-tetrametil-1,10-fenantrolina (Sigma-Aldrich, 98%). Os complexos *cis*-[Ru(R-phen)(dcbH₂)L₂], R = CH₃, H ou Ph, L = NCS⁻ ou Cl⁻, e *cis*-[Ru(dcbH₂)₂(NCS)₂] estavam disponíveis no laboratório provenientes de estudos anteriores.

3.2 Medidas espectrofotométricas e de pH

Os espectros eletrônicos na região do UV-Vis foram registrados em um espectrofotômetro Agilent 8453. O equipamento utiliza lâmpadas de tungstênio e deutério como fonte de radiação e realiza varreduras de 190 a 1100 nm. Os espectros foram obtidos em cubetas de fluxo de quartzo fundido de caminho óptico de 1,000 cm e capacidade 80 µL, utilizando um sistema em fluxo composto por uma bomba peristáltica Agilent Pump 1FS e tubos Tygon. As medidas de pH foram realizadas com um pHmetro Gehaka, modelo PG 2000, ao qual foi conectado um eletrodo alcoólico Sensoglass SA-02. O eletrodo possui sensor combinado de pH recarregável, com referencial calomelano e eletrólito de cloreto de lítio específico para medições alcoólicas. A calibração do eletrodo foi feita utilizando-se soluções-tampão de pH 4,01 e 7,01. Todas as medidas foram realizadas a 25 °C.

3.3 Determinação do pK_a dos Compostos

A determinação dos valores de pK_a foi realizada com pequenas modificações no procedimento descrito na literatura para compostos similares (Nazeeruddin, Zakeeruddin et al. 1999). Foram preparados 20 mL de soluções de aproximadamente 1,0 x 10^{-4} mol.L⁻¹ dos compostos em uma mistura 60% etanol/H₂O contendo 0,1 mol.L⁻¹ de NaCl ou NaNO₃ a fim de manter a força iônica do meio constante. NaCl foi utilizado nas determinações de pK_a dos ligantes R-phen e dos complexos *cis*-[Ru(R-phen)(dcbH₂)Cl₂], enquanto que NaNO₃ foi utilizado para os complexos *cis*-[Ru(R-phen)(dcbH₂)(NCS)₂]. À solução inicial foi adicionado NaOH 0,2 mol.L⁻¹ até pH 11. O pH foi reduzido por adição de volumes negligíveis (2-10 µL) de HCl ou HNO₃, 0,1 mol.L⁻¹, 1,0 mol.L⁻¹ ou 5,0 mol.L⁻¹, até pH 1 ou até ser observada precipitação. Após cada adição, a solução foi mantida sob agitação por cerca de 1-2 minutos para estabilização e logo em seguida foi registrado o espectro de absorção e a medida de pH.

3.4 Tratamento de Dados - Determinação dos valores de pK_a

Os valores de pK_a foram determinados a partir dos dados espectrofotométricos e valores de pH, de acordo com a Equação 1. Esta equação é obtida a partir da equação de Henderson-Hasselbalch e da lei de Beer-Lambert aplicada para as espécies protonada e desprotonada (Toma 1974; Frin 2008), na qual A = absorbância da mistura, A_f = absorbância final e A_0 = absorbância inicial.

$$pH = pK_a + \log \frac{(A - A_f)}{(A_0 - A)}$$
 (1)

A absorbância inicial se refere à espécie desprotonada e a absorbância final à espécie protonada. O coeficiente angular da equação é unitário e o valor de pK_a corresponde ao coeficiente linear da reta. Os valores de A_0 e A_f , quando necessário, foram estimados por método iterativo utilizando o programa OriginPro8®, que possibilita a obtenção de valores mais próximos dos reais a partir de uma série de iterações. As medidas foram realizadas em duplicata e os valores apresentados se referem à média dos resultados.

4 RESULTADOS E DISCUSSÃO

4.1 Medidas Espectrofotométricas e de pH

Com a gradativa redução do pH durante a titulação espectrofotométrica dos compostos *cis*-[Ru(R-phen)(dcbH₂)L₂], R = H, CH₃ ou Ph; L = Cl⁻ ou NCS⁻ é estabelecido um equilíbrio entre as espécies totalmente desprotonada e protonada, Figura 3. Este equilíbrio entre espécies com diferentes espectros de absorção é o princípio para a determinação do pK_a.

Figura 3 – Equilíbrio das espécies envolvidas durante a titulação espectrofotométrica de complexos de rutênio(II) do tipo *cis*-[Ru(R-phen)(dcbH₂)L₂], R = H, CH₃ ou Ph e R = H ou R = R = CH₃; L = Cl⁻ ou NCS⁻.

Embora o pK_a seja usualmente considerado uma constante, variáveis como temperatura, força iônica e constante dielétrica do meio alteram seu valor de forma que sua determinação requer que estas condições sejam controladas. A temperatura utilizada durante as medidas é, geralmente, mantida em 25°C. A constante dielétrica é alterada pela adição de cossolventes e a força iônica do meio é mantida constante pela adição de um sal (Jetse Reijenga 2013).

Os complexos de rutênio avaliados possuem baixíssima solubilidade em água, sendo necessária a adição de etanol para auxiliar em sua solubilização de modo que fosse possível realizar as medidas espectrofotométricas (Hagfeldt, Boschloo et al. 2010). A utilização de uma mistura 20% etanol/água, conforme descrito por Nazeeruddin (Nazeeruddin, Zakeeruddin et al. 1999) não foi suficiente para solubilizar todos os compostos avaliados. Sendo assim, a fim de proporcionar a completa dissolução dos complexos ao longo de toda a faixa de pH estudada foi utilizada uma proporção de 60% etanol/água.

Entretanto, por definição, o pH deve ser medido em água, de modo que o uso de misturas etanol-água interfere nas medidas de pH, e consequentemente na determinação dos valores de pK_a, sendo obtidos valores inexatos. Uma forma de contornar este problema é através do método de extrapolação de Yasuda-Shedlovsky, no qual são necessárias medidas de pK_a aparente em diferentes concentrações de etanol, de forma a extrapolar o resultado para uma concentração nula (Avdeef, Comer et al. 1993). A desvantagem deste método é que requer uma grande quantidade de experimentos e, consequentemente maior consumo de reagentes. Uma forma mais simples consiste na utilização um eletrodo alcoólico, o qual possui um eletrólito de cloreto de lítio, adequado para medidas em soluções alcoólicas. Este eletrodo possui uma junção com menor resistividade elétrica de modo a compensar a menor condutividade dos íons em etanol (Westcott 1978).

Uma vez que o pK_a depende dos coeficientes de atividade e estes dependem da força iônica do meio, esta deve ser mantida constante a fim de não interferir nas medidas (Jetse Reijenga 2013). Uma forma de medir constantes de dissociação ácida sem alterar a força iônica do meio é deixa-la suficientemente alta de forma que pequenas adições de íons durante a titulação não interfiram significativamente. A força iônica do meio foi mantida constante pela adição de NaCl ou NaNO₃, 0,1 mol.L⁻¹, o que resulta em uma força iônica I = 0,1, Equação 2, sendo c_i as concentrações de cada espécie iônica e z_i o valor de suas cargas.

$$I = \frac{1}{2} \sum_{i=1}^{n} z_i^{2} \cdot c_i$$
(2)

Assim, os fatores temperatura, força iônica do meio, bem como o efeito da adição de cossolvente foram considerados na determinação do pK_a dos compostos avaliados.

O método utilizado foi baseado naquele descrito para a determinação do valor de pK_a do composto *cis*-[Ru(dcbH₂)₂(NCS)₂], N3 (Nazeeruddin, Zakeeruddin et al. 1999). A reprodução deste experimento em triplicata resultou em um valor de pK_a de 3,28 \pm 0,08, que, considerando 5% do valor da medida, se encontra dentro do erro do valor reportado (3,0 \pm 0,1). Além disso, a utilização do eletrodo alcoólico para as medidas de pH das soluções 60% etanol/água reproduziu o pK_a determinado para o composto *cis*-[Ru(Me₂-phen)(dcbH₂)(NCS)₂] em solução 20% etanol/água, pK_a = 3,07 \pm 0,02 (eletrodo aquoso) e pK_a = 3,17 \pm 0,08 (eletrodo alcoólico), o que mostra que o aumento da proporção de etanol em relação ao procedimento descrito na literatura não afetou o resultado.

4.2 Determinação dos valores de pK_a dos ligantes

O equilíbrio químico estabelecido durante a titulação dos ligantes do R-phen, R = Ph, CH_3 ou H nas posições 3, 4, 7 e 8 ocorre com a protonação de seus átomos de nitrogênio, Figura 4.

Figura 4 – Equilíbrio de protonação dos ligantes R-phen, $\mathbf{R} = \mathbf{H}$, \mathbf{CH}_3 ou Ph e $\mathbf{R} = \mathbf{H}$ ou $\mathbf{R} = \mathbf{R} = \mathbf{CH}_3$.

Quando somente duas espécies se encontram em equilíbrio químico em solução ocorre a formação de pontos isosbésticos nos espectros de absorção obtidos em diferentes valores de pH. Estes pontos são caracterizados por sua invariância com a mudança das condições do meio, ou seja, em determinados valores de comprimentos de onda a absortividade permanece constante durante a titulação espectrofotométrica. Assim, a presença de pontos isosbésticos é uma evidência da ocorrência de um único equilíbrio de protonação (Ertan 1999). Entretanto, para os ligantes Me_2 -phen, Figura 5, e Me_4 -phen, Figura A5 – APÊNDICE A, não houve a formação destes pontos. A ausência de pontos isosbésticos se deve, provavelmente, a alta concentração utilizada do ligante que afetou a visualização das bandas do composto, além de possíveis pontos isosbésticos que poderiam ocorrer em valores de comprimento de onda menores, assim como observado nos demais ligantes.

Figura 5 - Espectros de absorção do ligante Me₂-phen em 60% EtOH/H₂O e força iônica constante (I = 0,1). A seta indica a variação dos espectros com a redução do pH do meio (pH 1,6 – 10,1).

Os espectros de absorção obtidos durante a titulação espectrofotométrica do ligante Me₂phen, Figura 5, apresentam intenso aumento de absorção com a redução do pH. Uma característica comum em todos os espectros de absorção obtidos é o deslocamento batocrômico das bandas de absorção com a redução do pH. Este deslocamento pode ser melhor observado nos espectros dos ligantes phen e Ph₂-phen nos quais são observados deslocamento de 9 nm na banda inicialmente centrada em 264 nm e 13 nm na banda inicialmente centrada em 274 nm, respectivamente, APÊNDICE A.

Com exceção dos pontos isosbésticos, qualquer comprimento de onda poderia ser utilizado para a determinação do pK_a. Entretanto, é recomendável utilizar aquele no qual há maior variação dos espectros de absorção (Jetse Reijenga 2013). Assim, a partir dos valores de absorção obtidos em 335 nm e os respectivos valores de pH medidos para o Me₂-phen, foi determinada a curva de titulação pH x absorbância, sendo que o valor de pK_a corresponde ao ponto de inflexão da curva, Figura 6. Este ponto corresponde ao pH no qual cada espécie (protonada e desprotonada) possui metade de sua absorbância máxima, ou seja, a solução é composta por 50% de cada espécie (Jetse Reijenga 2013). Para a phen, Me₄-phen e Ph₂-phen, foram utilizados valores de absorbância em 275, 320 e 290 nm, respectivamente, APÊNDICE A.

Figura 6 - Curva de titulação obtida a partir dos espectros de absorção do ligante Me₂-phen medidos em 335 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em função do $log ((A_f-A)/(A_0-A)).$

Um método alternativo para obter o pK_a é por meio da aplicação dos valores obtidos de A_0 e A_f conforme a curva de titulação, além dos valores de A e pH, na Equação 1 de forma a traçar o gráfico de regressão linear, Figura 6 (inset), no qual o valor de pK_a corresponde ao coeficiente linear da reta obtida. O método iterativo é utilizado de forma a ajustar os valores de A_0 e A_f . Neste método os valores obtidos de A_f e/ou A_0 são substituídos na Equação 1, que gera como resultado valores de A_f e/ou A_0 que se ajustam melhor a reta. Este processo é repetido até que os valores gerados não variem significativamente com novas iterações (Toma 1974).

Os valores de pK_a determinados para os ligantes correspondem ao esperado de acordo com as características aceptoras ou doadoras de elétrons dos substituintes, Tabela 1. O grupo metil, quando ligado a carbono sp² apresenta um fraco efeito doador de elétrons, uma vez que o carbono hibridizado em sp³ possui menor caráter s do que aquele hibridizado em sp², gerando assim uma pequena diferença de eletronegatividade entre os átomos de carbono (Clayden 2012). Sendo assim, a densidade eletrônica é deslocada estabilizando a carga positiva formada na espécie protonada, o que resulta em valores de pK_a maiores em relação a phen sem substituição (pK_a = 3,64 ± 0,01). Além disso, a presença de quatro substituintes no ligante Me₄-phen provoca um efeito ainda mais intenso, o que resulta em um valor de pK_a ainda maior (pK_a = 5,10 ± 0,07). O efeito contrário ocorre para o substituinte aceptor de elétrons, fenil. A presença do grupo aceptor de elétrons causa a redução do pK_a (pK_a = 3,43 ± 0,06) em relação à phen, pois o grupo fenil provoca maior estabilização da forma desprotonada, uma vez que permite a deslocalização eletrônica dos elétrons não ligantes presentes nos átomos de nitrogênio.

Tabela 1 - Valores de pK_a determinados para os ligantes R-phen, $R = Ph_2$ (290 nm), Me₂ (335 nm), Me₄ (320 nm) ou H (275 nm), e seus respectivos valores de pK_a reportados na literatura. Os resultados apresentados são a média de dois experimentos.

pK _a determinado	pK _a literatura
3,43 ± 0,06 (290 nm)	$4,84^{\rm a}$
$3,64 \pm 0,01 \ (275 \ nm)$	$4,86^{a}$
$4,66 \pm 0,05 (335 \text{ nm})$	5,94 ^b
$5,10 \pm 0,07 \; (320 \; nm)$	6,31 ^a
	$\begin{array}{c} pK_{a} \mbox{ determinado} \\ 3,43 \pm 0,06 \ (290 \ nm) \\ 3,64 \pm 0,01 \ (275 \ nm) \\ 4,66 \pm 0,05 \ (335 \ nm) \\ 5,10 \pm 0,07 \ (320 \ nm) \end{array}$

^a Constantes determinadas em água pelo método de extrapolação a quantidade nula de solvente (dioxano), a 25 ℃ e força iônica variável (0.0025 - 0.0030) (Schilt and Smith 1956).
^b Constante determinada por potenciometria, a 25 ℃ e força iônica constante (0,1) (Yasuda, Sone et

al. 1956).

Os valores de pK_a reportados na literatura para os ligantes avaliados apresentam a mesma tendência observada para os valores determinados, apesar da pequena diferença entre os valores de pK_a dos ligantes Ph_2 -phen e phen. A diferença entre os valores obtidos e aqueles da literatura pode estar relacionada ao método de extrapolação utilizado ou a composição do meio.

Os valores determinados de pK_a foram plotados em relação aos parâmetros de Hammett dos substituintes R (SMITH), Figura 7. Para isto foram utilizados os valores de σ_p , que corresponde aos substituintes na posição para, além do valor em σ_m para o Me₄-phen, o qual foi adicionado ao valor de σ_p . As constantes de Hammett são parâmetros empíricos que quantificam os efeitos eletrônicos indutivos e de ressonância de substituintes em reações. Em muitos estudos têm se chegado a uma relação linear entre os substituintes e propriedades químicas dos compostos, que pode ser útil para prever propriedades de compostos desconhecidos (Domingo, Pérez et al. 2003; Al-Rawashdeh, Chatterjee et al. 2014).

Figura 7 – Relação linear obtida a partir dos valores de pK_a determinados para os ligantes R-phen, R = Ph₂, CH₃ ou H, com as constantes de Hammett ($\sigma_p + \sigma_m$) em comparação com os valores de pK_a da literatura.

Foi possível obter uma relação linear entre os valores de pK_a determinados e os parâmetros de Hammett, o que demonstra a relação direta destes parâmetros com o caráter doador ou aceptor de elétrons do grupo R.

4.3 Determinação do pK_a dos complexos de rutênio(II)

Os espectros de absorção obtidos durante a titulação espectrofotométrica de todos os compostos cis-[Ru(R-phen)(dcbH₂)L₂], L = Cl⁻ ou NCS⁻, apresentaram pelo menos dois pontos isosbésticos nítidos, Tabela 2, o que comprova a existência de um único equilíbrio de protonação e, portanto um único valor de pK_a a ser determinado.

Compostos	Pontos is	osbésticos	$\lambda_{máx}$	'nm	$\Delta \lambda^*/nm$
	(λ/1	nm)	(espécie des	protonada)	
cis-[Ru(phen)(dcbH ₂)Cl ₂]	329	378	421	532*	24
cis-[Ru(Ph₂-phen)(dcbH ₂)Cl ₂]	328	278	438	533*	20
cis-[Ru(Me ₂ -phen)(dcbH ₂)Cl ₂]	329	381	423	536*	26
cis-[Ru(Me ₄ -phen)(dcbH ₂)Cl ₂]	329	384	425	539*	27
cis-[Ru(phen)(dcbH ₂)(NCS) ₂]	329	381	416	527*	24
cis-[Ru(Ph₂-phen)(dcbH ₂)(NCS) ₂]	331	383	436	531*	23
cis-[Ru(Me ₂ -phen)(dcbH ₂)(NCS) ₂]	329	384	426	540*	28
cis-[Ru(Me ₄ -phen)(dcbH ₂)(NCS) ₂]	332	381	418	532*	37

Tabela 2 – Pontos isosbésticos, máximos de absorção e deslocamentos dos máximos de menor energia obtidos por titulação espectrofotométrica dos compostos *cis*-[Ru(R-phen)(dcbH₂)L₂], R = Ph₂, CH₃ ou H, L = Cl⁻ ou NCS⁻

As bandas de absorção são características de transições de transferência de carga metalligante (MLCT), possuindo absortividades molares na ordem de 10^4 mol.L⁻¹ e localizadas na região visível do espectro, Figura 8 (Souza, Andrade et al. 2013). A banda de maior energia, em geral, sofre pouco ou nenhum deslocamento com o decréscimo do pH do meio, entretanto, em todos os compostos esta banda possui aumento significante de absorção. Também é observado um deslocamento batocrômico da banda de menor energia. O composto *cis*-[Ru(Me₂phen)(dcbH₂)Cl₂], por exemplo, apresenta intenso aumento de absorção em sua banda centrada em 423 nm e um deslocamento de 26 nm em sua banda inicialmente centrada em 510 nm, Tabela 2. Este deslocamento está associado a maior capacidade retiradora de elétrons do grupo –COOH em comparação com a espécie desprotonada, o que reduz a energia do orbital π^* do ligante resultando em maiores comprimentos de onda de absorção (Nazeeruddin, Péchy et al. 2001; Duncan and Prezhdo 2007).

Como a banda MLCT de maior energia apresentou grande variação de absorção para todos os compostos foi utilizado o valor de 420 nm, que se encontra nesta região, para as determinações dos valores de pK_a.

Como resultado deste método determinou-se um pK_a de 3,06 \pm 0,05 para o *cis*-[Ru(Me₂-phen)(dcbH₂)Cl₂], Figura 9, que corresponde ao coeficiente linear da reta pH x log ((A-A_f)/((A₀-A)). O mesmo tratamento de dados foi utilizado para os demais compostos, APÊNDICE B, e os resultados estão representados na Tabela 3.

Figura 9 - Curva de titulação obtida a partir dos espectros de absorção do composto *cis*-[Ru(Me₂-phen)(dcbH₂)Cl₂] medidos em 420 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em função do log ((A_f-A)/(A₀-A)).

A variação dos substituintes nos ligantes R-phen não proporcionou efeito significante no valor de pK_a dos compostos *cis*-[Ru(R-phen)(dcbH₂)L₂] que, dentro dos valores de desvio padrão obtidos, apresentaram o mesmo valor de pK_a, Figura 10. Este resultado é compreensível uma vez que os substituintes metil e fenil são considerados fracos doador e aceptor de elétrons, respectivamente. Assim, seus efeitos eletrônicos não são suficientes para afetar o grupo carboxílico a longa distância.

Tabela 3 - Valores de pK_a determinados para os compostos *cis*-[Ru(R-phen)(dcbH₂)L₂], R = Ph₂, CH₃ ou H, L = Cl⁻ ou NCS⁻, utilizando valores de absorbância a 420 nm. Os resultados apresentados são a média de dois experimentos.

Ligante	pł	K _a
R-phen	$\mathbf{L} = \mathbf{CI}^{-}$	$\mathbf{L} = \mathbf{NCS}^{-}$
Ph ₂ -phen	$2,971 \pm 0,001$	$3,15 \pm 0,05$
Phen	$3,03 \pm 0,04$	$3,07 \pm 0,08$
Me ₂ -phen	$3,06 \pm 0,05$	$3,17 \pm 0,08$
Me ₄ -phen	$3,02 \pm 0,08$	$3,23 \pm 0,01$

Figura 10 – Representação gráfica dos valores de pK_a determinados para os compostos *cis*-[Ru(R-phen)(dcbH₂)L₂], R = Ph₂, CH₃ ou H, L = Cl⁻ ou NCS⁻, e seus respectivos desvios padrão. Os resultados apresentados são a média de dois experimentos.

Os efeitos eletrônicos de substituintes são classificados como indutivo e mesomérico (ou ressonante). O efeito indutivo é decorrente da diferença de eletronegatividade gerando uma repulsão ou atração de elétrons através de ligações σ . Este efeito é de curto alcance e, portanto, é reduzido conforme a distância do grupo responsável aumenta. Já o efeito mesomérico é transmitido através de ligações π , envolvendo elétrons de ligações conjugadas ou ligações π próximas a um par de elétrons não ligante (Clayden 2012). Nos compostos avaliados, como o substituinte encontra-se a uma distância relativamente grande do ácido carboxílico, é esperado que efeitos indutivos não influenciem seu pK_a.

Nos compostos *cis*-[Ru(R-phen)(dcbH₂)L₂], R = Ph ou Me₄, é possível observar uma pequena diferença nos valores de pK_a obtidos para L = Cl⁻ e NCS⁻, Figura 10. Uma vez que o NCS⁻ é um doador de par de elétrons, há uma contribuição de densidade eletrônica que favorece a forma protonada, resultando em um valor de pK_a maior (pK_a = $3,23 \pm 0,01$ (Me₄-phen)) e $3,15 \pm$

0,05 (Ph₂-phen)) em relação aos compostos com substituinte Cl⁻. Como retirador de elétrons, o cloro contribui para a estabilização da carga gerada no composto desprotonado resultando assim, em valores menores de pK_a (3,02 \pm 0,08 (Me₄-phen) e 3,971 \pm 0,001(Ph₂-phen)). Os compostos sem ligantes e com duas metilas não apresentaram variação em seus valores de pK_a com a mudança do ligante NCS⁻/Cl⁻.

4 CONCLUSÕES

Os valores determinados para as constantes de dissociação ácida dos ligantes R-phen livres se relacionam diretamente com as propriedades doadoras/aceptoras dos substituintes da fenantrolina, sendo possível obter uma relação linear com as constantes de Hammett. O substituinte fenil provoca uma redução de 0,21 unidades de pK_a em relação à phen como consequência de seu efeito retirador de elétrons. O grupo metil provoca um aumento de 1,06 unidades no pK_a como consequência de seu efeito doador. O efeito é ainda maior (1,46 unidades) quando são utilizados quatro substituintes metil.

Embora os efeitos eletrônicos dos substituintes dos ligantes R-phen provoquem uma variação significativa nos valores de pK_a, o mesmo efeito não é observado quando estes ligantes estão presentes nos compostos *cis*-[Ru(R-phen)(dcbH₂)L₂]. Assim, o pK_a dos grupos carboxílicos não muda com a variação dos substituintes da phen. Entretanto uma pequena variação no pK_a foi observada com a mudança dos ligantes L (Cl⁻ ou NCS⁻) para os compostos nos quais R = Ph₂ e Me₄. Uma vez que o grupo NCS⁻ é doador de par de elétrons, o pK_a dos compostos tende a ser maior em relação aqueles com o ligante retirador de elétrons, Cl⁻.

5 REFERÊNCIAS

- Al-Rawashdeh, N. A. F., S. Chatterjee, et al. (2014). "Ruthenium Bis-diimine Complexes with a Chelating Thioether Ligand: Delineating 1,10-Phenanthrolinyl and 2,2'-Bipyridyl Ligand Substituent Effects." <u>Inorganic</u> <u>Chemistry</u> 53(1): 294-307.
- Avdeef, A., J. E. A. Comer, et al. (1993). "pH-Metric log P. 3. Glass electrode calibration in methanol-water, applied to pKa determination of water-insoluble substances." <u>Analytical Chemistry</u> **65**(1): 42-49.
- Boston, D. J., Y. M. F. Pachón, et al. (2014). "Electrocatalytic and Photocatalytic Conversion of CO₂ to Methanol using Ruthenium Complexes with Internal Pyridyl Cocatalysts." <u>Inorganic Chemistry</u> 53(13): 6544-6553.
- Carvalho, F., E. Liandra-Salvador, et al. (2014). "Synthesis, characterization and photoelectrochemical performance of a tris-heteroleptic ruthenium(II) complex having 4,7-dimethyl-1,10-phenanthroline." <u>Inorganica Chimica Acta</u> **414**: 145-152.
- Clayden, J. G., Nick; Warren, Stuart; Wothers, Peter (2012). Organic Chemistry.
- Domingo, L. R., P. Pérez, et al. (2003). "Electronic Contributions to the σp Parameter of the Hammett Equation." <u>The Journal of Organic Chemistry</u> **68**(15): 6060-6062.
- Duncan, W. R. and O. V. Prezhdo (2007). "Theoretical Studies of Photoinduced Electron Transfer in Dye-Sensitized TiO₂." <u>Annual Review of Physical Chemistry</u> **58**(1): 143-184.
- Ertan, N. (1999). "Synthesis of some hetarylazopyrazolone dyes and solvent effects on their absorption spectra." Dyes and Pigments 44(1): 41-48.
- Fan, S.-H., A.-G. Zhang, et al. (2010). "A Triphenylamine-Grafted Imidazo[4,5-f][1,10]phenanthroline Ruthenium(II) Complex: Acid–Base and Photoelectric Properties." <u>Inorganic Chemistry</u> 49(8): 3752-3763.
- Frin, K. P. M. (2008). <u>Propriedades fotoquímicas de alguns complexos de ferro(II) e rênio(II).</u> Tese (Doutorado em Química Inorgânica), Instituto de Química, Universidade de São Paulo.
- Grelaud, G., N. Gauthier, et al. (2014). "Redox-Active Molecular Wires Derived from Dinuclear Ferrocenyl/Ruthenium(II) Alkynyl Complexes: Covalent Attachment to Hydrogen-Terminated Silicon Surfaces." <u>The Journal of Physical Chemistry C</u> 118(7): 3680-3695.
- Hagfeldt, A., G. Boschloo, et al. (2010). "Dye-Sensitized Solar Cells." Chemical Reviews 110(11): 6595-6663.
- He, H., W. Li, et al. (2014). "Ruthenium complex immobilized on mesoporous silica as recyclable heterogeneous catalyst for visible light photocatalysis." <u>Chemical Research in Chinese Universities</u> **30**(2): 310-314.
- Horvath, R. and K. C. Gordon (2011). "Excited state vibrational spectroscopy of metal complexes of dipyrido[3,2-a:2',3'-c]phenazine." Inorganica Chimica Acta **374**(1): 10-18.
- Inagaki, A. and M. Akita (2010). "Visible-light promoted bimetallic catalysis." <u>Coordination Chemistry Reviews</u> **254**(11–12): 1220-1239.
- Jetse Reijenga, A. v. H., Antonie van Loon and Bram Teunissen (2013). "Development of Methods for the Determination of pK_a Values." <u>Analytical Chemistry Insights</u>: 53–71.

- Kilså, K., E. I. Mayo, et al. (2004). "Anchoring Group and Auxiliary Ligand Effects on the Binding of Ruthenium Complexes to Nanocrystalline TiO₂ Photoelectrodes." <u>The Journal of Physical Chemistry B</u> 108(40): 15640-15651.
- Lemercier, G., A. Bonne, et al. (2008). "(MLCT)-M-3 excited states in Ru(II) complexes: Reactivity and related twophoton absorption applications in the near-infrared spectral range." <u>Comptes Rendus Chimie</u> **11**(6-7): 709-715.
- Müller, A. V., P. S. Mendonça, et al. (2015). "Effects of Methyl-Substituted Phenanthrolines on the Performance of Ruthenium(II) Dye-Sensitizers." Journal of the Brazilian Chemical Society **26**: 2224-2232.
- Nazeeruddin, M. K., E. Baranoff, et al. (2011). "Dye-sensitized solar cells: A brief overview." <u>Solar Energy</u> **85**(6): 1172-1178.
- Nazeeruddin, M. K., T. Bessho, et al. (2007). "A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cell." Journal of Photochemistry and Photobiology a-Chemistry 185(2-3): 331-337.
- Nazeeruddin, M. K., R. Humphry-Baker, et al. (2003). "Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO₂ Solar Cell." <u>The Journal of</u> <u>Physical Chemistry B</u> 107(34): 8981-8987.
- Nazeeruddin, M. K., A. Kay, et al. (1993). "Conversion of light to electricity by *cis*-X₂bis(2,2'-bipyridyl-4,4'dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl⁻, Br⁻, I⁻, CN⁻, and SCN⁻) on nanocrystalline titanium dioxide electrodes." Journal of the American Chemical Society **115**(14): 6382-6390.
- Nazeeruddin, M. K., P. Péchy, et al. (2001). "Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO₂-Based Solar Cells." Journal of the American Chemical Society **123**(8): 1613-1624.
- Nazeeruddin, M. K., S. M. Zakeeruddin, et al. (1999). "Acid–Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania." <u>Inorganic Chemistry</u> 38(26): 6298-6305.
- Nazeeruddin, M. K., S. M. Zakeeruddin, et al. (2000). "Determination of pK_a Values of 4-Phosphonato-2,2':6',2''-Terpyridine and Its Ruthenium(II)-Based Photosensitizer by NMR, Potentiometric, and Spectrophotometric Methods." <u>Inorganic Chemistry</u> 39(20): 4542-4547.
- Nazeeruddin, M. K., S. M. Zakeeruddin, et al. (2004). "Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell." <u>Coordination Chemistry Reviews</u> **248**(13-14): 1317-1328.
- Ohzu, S., T. Ishizuka, et al. (2013). "Photocatalytic Oxidation of Organic Compounds in Water by Using Ruthenium(II)–Pyridylamine Complexes as Catalysts with High Efficiency and Selectivity." <u>Chemistry – A</u> <u>European Journal</u> **19**(5): 1563-1567.
- Olivier, C., B. Kim, et al. (2008). "Redox-Active Molecular Wires Incorporating Ruthenium(II) σ-Arylacetylide Complexes for Molecular Electronics." <u>Organometallics</u> 27(4): 509-518.
- Onozawa-Komatsuzaki, N., O. Kitao, et al. (2006). "Molecular and electronic ground and excited structures of heteroleptic ruthenium polypyridyl dyes for nanocrystalline TiO₂ solar cells." <u>New Journal of Chemistry</u> **30**(5): 689-697.
- Pizzoli, G., M. G. Lobello, et al. (2012). "Acid-base properties of the N3 ruthenium(II) solar cell sensitizer: a combined experimental and computational analysis." <u>Dalton Transactions</u> **41**(38): 11841-11848.

- Polo, A. S., M. K. Itokazu, et al. (2004). "Metal complex sensitizers in dye-sensitized solar cells." <u>Coordination</u> <u>Chemistry Reviews</u> 248(13–14): 1343-1361.
- Rees, T. W. and E. Baranoff (2014). "Ruthenium complexes with tridentate ligands for dye-sensitized solar cells." <u>Polyhedron</u> 82: 37-49.
- Schilt, A. A. and G. F. Smith (1956). "Acid Dissociation Constants of Substituted 1,10-Phenanthrolines." <u>The</u> Journal of Physical Chemistry **60**(11): 1546-1548.
- SMITH, M. M., Jerry. <u>March's advanced organic chemistry: reactions, mechanisms, and struture.</u> 6 ed. Hoboken, EUA: Wiley, c2007. xx, 2357 p.
- Souza, J. d. S., L. O. M. Andrade, et al. (2013). Nanomaterials for Solar Energy Conversion: Dye-Sensitized Solar Cells Based on Ruthenium (II) *Tris*-Heteroleptic Compounds or Natural Dyes. <u>Nanoenergy:</u> <u>Nanotechnology Applied for Energy Production</u>. L. F. de Souza and R. E. Leite. Berlin, Heidelberg, Springer Berlin Heidelberg: 49-80.
- Sun, Y., A. C. Onicha, et al. (2010). "Viable Alternative to N719 for Dye-Sensitized Solar Cells." <u>ACS Applied</u> <u>Materials & Interfaces</u> **2**(7): 2039-2045.
- Tachibana, Y., M. K. Nazeeruddin, et al. (2002). "Electron injection kinetics for the nanocrystalline TiO₂ films sensitised with the dye (Bu₄N)₂Ru(dcbpyH)₂(NCS)₂." <u>Chemical Physics</u> **285**(1): 127-132.
- Toma, H. E. (1974). <u>Influência das interações de transferência de elétrons no comportamento dos complexos de pentaaminrutênio(II) e de pentacianoferrato(II) com ligantes insaturados.</u> Tese (Doutorado em Química Inorgânica), Instituto de Química, Universidade de São Paulo.
- van der Salm, H., A. B. S. Elliott, et al. (2015). "Substituent effects on the electronic properties of complexes with dipyridophenazine and triazole ligands: Electronically connected and disconnected ligands." <u>Coordination Chemistry Reviews</u> 282–283: 33-49.
- Wächtler, M., S. Kupfer, et al. (2011). "Influence of Multiple Protonation on the Initial Excitation in a Black Dye." <u>The Journal of Physical Chemistry C</u> 115(48): 24004-24012.
- Westcott, C. C. (1978). pH measurements. New York, Academic Press Inc.
- Yadav, A., T. Janaratne, et al. (2013). "Regression of Lung Cancer by Hypoxia-Sensitizing Ruthenium Polypyridyl Complexes." <u>Molecular Cancer Therapeutics</u> **12**(5): 643-653.
- Yasuda, M., K. Sone, et al. (1956). "Stability of Zinc and Cadmium Complexes with Some Methyl Derivatives of 1,10-Phenanthroline and 2,2'-Bipyridine." <u>The Journal of Physical Chemistry</u> **60**(12): 1667-1668.
- Ye, M., X. Wen, et al. (2015). "Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes." <u>Materials Today</u> 18(3): 155-162.
- Yin, J.-F., M. Velayudham, et al. (2012). "Structure optimization of ruthenium photosensitizers for efficient dyesensitized solar cells – A goal toward a "bright" future." <u>Coordination Chemistry Reviews</u> 256(23–24): 3008-3035.
- Yu, Q., Y. Liu, et al. (2014). "Ruthenium(II) polypyridyl complexes: Cellular uptake, cell image and apoptosis of HeLa cancer cells induced by double targets." <u>European Journal of Medicinal Chemistry</u> 82: 82-95.
- Yue, X., Z. Zhu, et al. (2015). "Reaction-Based Turn-on Electrochemiluminescent Sensor with a Ruthenium(II) Complex for Selective Detection of Extracellular Hydrogen Sulfide in Rat Brain." <u>Analytical Chemistry</u> 87(3): 1839-1845.

- Zhang, L. and J. M. Cole (2015). "Anchoring Groups for Dye-Sensitized Solar Cells." <u>ACS Applied Materials & Interfaces</u> 7(6): 3427-3455.
- Zhang, R., Z. Ye, et al. (2012). "Developing Red-Emissive Ruthenium(II) Complex-Based Luminescent Probes for Cellular Imaging." <u>Bioconjugate Chemistry</u> **23**(4): 725-733.

APÊNDICE A - Espectros de absorção, curvas de titulação e regressão linear para os ligantes R-phen

Figura A1. Espectros de absorção da phen em 60% EtOH/H₂O e força iônica constante (I = 0,1). As setas indicam a variação dos espectros com a redução do pH do meio (pH 1,4 - 5,0).

Figura A2 - Curva de titulação obtida a partir dos espectros de absorção do ligante phen obtidos em 275 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em função do $\log ((A_f-A)/(A_0-A)).$

Figura A3. Espectros de absorção da Ph_2 -phen em 60% EtOH/ H_2O e força iônica constante (I = 0,1). As setas indicam a variação dos espectros com a redução do pH do meio (pH 1,4 – 11,0).

Figura A4 - Curva de titulação obtida a partir dos espectros de absorção do ligante Ph_2 -phen obtidos em 290 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em função do log ((A_f -A)/(A_0 -A)).

Figura A5. Espectros de absorção da Me₄-phen em 60% EtOH/H₂O e força iônica constante (I = 0,1). A seta indica a variação dos espectros com a redução do pH do meio (pH 1,4 – 11,0).

Figura A6 - Curva de titulação obtida a partir dos espectros de absorção do ligante Me₄-phen obtidos em 320 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em função do $log ((A_f-A)/(A_0-A)).$

APÊNDICE B - Espectros de absorção, curvas de titulação e regressão linear para os compostos *cis*-[Ru(R-phen)(dcbH₂)L₂], L = NCS⁻ ou Cl⁻

Figura B1. Espectros de absorção do *cis*-[Ru(phen)(dcbH₂)(NCS)₂] em 60% EtOH/H₂O e força iônica constante (I = 0,1). As setas indicam a variação dos espectros com a redução do pH do meio (pH 1,4 – 6,7).

Figura B2 - Curva de titulação obtida a partir dos espectros de absorção do *cis*-[Ru(phen)(dcbH₂)(NCS)₂] obtidos em 420 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em função do log ((A_f-A)/(A₀-A)).

Figura B3. Espectros de absorção do *cis*-[Ru(Ph₂-phen)(dcbH₂)(NCS)₂] em 60% EtOH/H₂O e força iônica constante (I = 0,1). As setas indicam a variação dos espectros com a redução do pH do meio (pH 1,4 – 6,2).

Figura B4 - Curva de titulação obtida a partir dos espectros de absorção do *cis*-[Ru(Ph₂-phen)(dcbH₂)(NCS)₂] obtidos em 420 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em função do log ((A_f-A)/(A₀-A)).

Figura B5. Espectros de absorção do *cis*-[Ru(Me₂-phen)(dcbH₂)(NCS)₂] em 60% EtOH/H₂O e força iônica constante (I = 0,1). As setas indicam a variação dos espectros com a redução do pH do meio (pH 2,1 – 7,0).

Figura B6 - Curva de titulação obtida a partir dos espectros de absorção do *cis*-[Ru(Me₂-phen)(dcbH₂)(NCS)₂] obtidos em 420 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em função do log $((A_f-A)/(A_0-A))$.

Figura B7. Espectros de absorção do *cis*-[Ru(Me₄-phen)(dcbH₂)(NCS)₂] em 60% EtOH/H₂O e força iônica constante (I = 0,1). As setas indicam a variação dos espectros com a redução do pH do meio (pH 1,7 – 6,8).

Figura B8 - Curva de titulação obtida a partir dos espectros de absorção do *cis*-[Ru(Me₄-phen)(dcbH₂)(NCS)₂] obtidos em 420 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em função do log ((A_f-A)/(A₀-A)).

Figura B9. Espectros de absorção do *cis*-[Ru(phen)(dcbH₂)Cl₂] em 60% EtOH/H₂O e força iônica constante (I = 0,1). As setas indicam a variação dos espectros com a redução do pH do meio (pH 1,8 – 6,8).

Figura B10 - Curva de titulação obtida a partir dos espectros de absorção do *cis*-[Ru(phen)(dcbH₂)Cl₂] obtidos em 420 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em função do log $((A_{f}-A)/(A_{0}-A))$.

Figura B11. Espectros de absorção do *cis*-[Ru(Ph₂-phen)(dcbH₂)Cl₂] em 60% EtOH/H₂O e força iônica constante (I = 0,1). As setas indicam a variação dos espectros com a redução do pH do meio (pH 1,5 - 7,0).

Figura B12 - Curva de titulação obtida a partir dos espectros de absorção do cis-[Ru(Ph₂-phen)(dcbH₂)Cl₂] obtidosem 420 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em
função do log ((A_f-A)/(A₀-A)).

Figura B13. Espectros de absorção do *cis*-[Ru(Me₄-phen)(dcbH₂)Cl₂] em 60% EtOH/H₂O e força iônica constante (I = 0,1). As setas indicam a variação dos espectros com a redução do pH do meio (pH 1,4 - 4,1).

Figura B14 - Curva de titulação obtida a partir dos espectros de absorção do *cis*-[Ru(Me₄-phen)(dcbH₂)Cl₂] obtidos em 420 nm em diferentes valores de pH. Inset: regressão linear obtida após o processo iterativo na curva de pH em função do log $((A_f-A)/(A_0-A))$.

