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In this graduation thesis, the single-crystalline growth and systematic study of the

type-II Dirac semimetal NiTe2 was performed. The crystalline phase was determined

by means of powder X-ray diffraction, as well as the highly metallic character of its

charge carriers from resistivity measurements and from the dominant Pauli para-

magnetism of the itinerant electrons. Most importantly, the Fermi surface of this

topological material was indirectly probed through the de Haas-van Alphen effect,

where two different oscillations were resolved, signaling the presence of at least two

conducting bands at the Fermi level. The charge carriers were found to have very

low effective masses of 0.13(3) m0 and 0.20(4) m0, where m0 is the free electron

mass, and the topological character of the bands was found to be non-trivial from

the Berry phase of the oscillations.

1. INTRODUCTION

Following the groundbreaking graphene experiments performed by Novoselov and Geim

in 2005 [1], a new field in condensed matter physics emerged, focused on studying how

conducting states could appear in a material that would normally be an insulator. Kane

et al. showed that while the valence and conducting bands are separated by a bulk energy

gap in these so-called topological insulators, the band topology and the crystalline symmetry

requires that the bands touch at a single point in momentum space, corresponding to the edge

of the material. Furthermore, theoretical results showed that the charge carriers followed a

linear dispersing relation, typical of relativistic particles, where the bands came in contact
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through a cone-like structure named as a Dirac cone [2, 3]. The prediction of perturbation-

protected edge states naturally gained the attention of several different areas of research

(ranging from spintronics to quantum information), and the search for new topological

materials became of great interest to the academic community[4].

It was found that this topological phase was not restricted to 2D materials, such as

graphene or HgTe/CdTe quantum well structures [5], but had a three dimensional counter-

part where the Dirac cone presented protected surface states and a locking between spin

and momentum. Experimentally, the first generation of 3D topological insulators was es-

tablished by the semiconducting alloys in the Bi1−xSbx family [6], but it was later joined by

the ”second generation materials“ Bi2Se3, Bi2Te3 and Sb2Te3, presenting a larger bulk band

gap that enables further exploration of the topological effects [7].

Since then, the classification of materials based on their topological properties extended

to metals, semimetals and even superconductors. As an example, a Weyl Semimetal (WSM)

presents linear dispersion in all 3 dimensions with 3D-Dirac (or Weyl) ”cones“. A point in

the Brillouin zone (BZ) where this band crossing occurs is named a Weyl node, and these

act as sources (or sinks) of the so-called Berry field1, depending on their chirality. Since

the net chirality of a BZ is required to be null, Weyl nodes must always come in pairs

[8]. Experimental examples are TaAs [9], the transition-metal pnictide family [10] and the

Kagomé crystal Co2MnGa [11].

If both time-reversal and inversion symmetry are present, the pair of Weyl nodes may

merge and a single non-chiral Dirac cone appears, with a 4-fold degeneracy at the crossing.

This is the Dirac Semimetal (DSM) phase, and is sometimes considered as a 3D version of

graphene. The merging of the Weyl nodes is hard to realize experimentally because it is

only guaranteed from crystalline symmetry (not the topology), but several such materials

have been found over the last decade. Examples are Cd3As2 [12] and the A3Bi2 family

(A=Na,K,Rb)[13].

In 2015, Soluyanov et al. [14] described a new topological phase that hosted a novel

type of fermion, not predicted earlier in the context of high-energy physics because it breaks

the Lorentz invariance of the Dirac equation, contrary to Dirac, Weyl or even Majorana

1 The Berry field is mathematically similar to the regular magnetic field, with the main difference coming

from the existence of Weyl nodes, that act as monopoles of the Berry flux. See [8].
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fermions2. These so-called type-II Weyl semimetals present Weyl cones that are tilted in a

specific direction. In contrast to regular (type-I) WSM that possess closed (usually spher-

ical) Fermi surfaces, type-II WSM can present an open Fermi surface with contact points

between hole and electon pockets. Several realizations of these anisotropic materials have

been realized, such as MoTe2 [15] and WTe2 [16].

Combining both concepts above, a type-II Dirac semimetal phase (type-II DSM) hosts a

tilted Dirac cone with 4-fold degeneracy. This phase was predicted for the first time in the

PtSe2 system [17, 18], where a pair of strongly tilted Dirac cones appeared at the kz-axis

of the BZ, protected by the structural symmetry of the P3m1 space group. Practical con-

sequences of the relativistic fermions could not be further explored in this material because

the Dirac point is far below the Fermi level. The related compound NiTe2 was predicted

in 2018 by Xu et al. to host type-II Dirac fermions just above the Fermi energy[19], where

direct consequences of these relativistic charge carriers appeared in the large linear magne-

toresistance and in the quantum oscillations of the magnetization. The topological phase of

the material was confirmed by Ghosh et al. [20] and subsequently in 2020 by Mukherjee et

al. [21]. As a possible consequences of the topology, superconducting phases have also been

predicted down to the monolayer limit [22, 23], under hydrostatic pressure [24] and through

chemical doping [25–27].

In general, the topological character of a material can only be fully determined experi-

mentally through the direct observation of the Fermi surface structure, using angle-resolved

photoemission spectroscopy (ARPES). But the sophisticated nature of this method invites

the use of simpler and/or indirect probes of the Fermi surface, such as quantum oscillations

that are manifested under applied magnetic fields in certain circumstances. Fundamen-

tally, these oscillations arise from periodical changes in the density of states available as the

Landau levels (LLs) cross the Fermi level, as a function the inverse of the magnetic field.

Such effect has consequences in several properties of metals, such as the magnetoresistivity

(Shubnikov-de Haas oscillations), Hall resistivity, thermoelectric power and, most directly,

in the magnetization, in the form of the de Haas-van Alphen effect, that will be discussed

in detail in Section 2. In topologically non-trivial materials, the charge carriers gain an

additional geometrical (Berry) phase as they go into the cyclothron orbits of the LLs, re-

2 A Majorana fermion is predicted to appear at each edge state of a 2D topological insulator [4]
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maining one of the few direct observations of relativistic fermions available through a simple

experimental procedure.

In this undergraduate thesis, the experimental characterization of the type-II Dirac

semimetal NiTe2 was performed. Starting with the single crystal growth and structural

characterization, the electronic and magnetic responses were then studied through resistiv-

ity, magnetization and, finally, through measurements of the de Haas-van Alphen effect.

The experiments are detailed in Section 3 and the analysis of the results are thoroughly

discussed in Section 4. The work performed is based on the article by Xu et al. [19], with a

few important differences outlined in the discussion and the conclusion.

2. THE DE HAAS-VAN ALPHEN EFFECT

This chapter aims to present an intuitive theoretical understanding of the oscillations

in the magnetization observed experimentally by W.J. de Haas and P.M. van Alphen in

1930 when studying the magnetism of bismuth [28]. Subsection 2 2.1 starts from Landau’s

solution of the confined electron under a constant magnetic field [29] [30], following on

subsection 2 2.2 with an explanation of the oscillatory behaviour as a function of the applied

magnetic field. The last part of this chapter addresses the generalizations made by Onsager

for the electron in a periodic potential [31] and the general formula considering temperature

damping, known as the Lifshitz-Kosevich formula [32], [33]. CGS gaussian units are used in

this derivation.

2.1. Landau levels in free electrons

In order to understand the full phenomena, let’s first take a closer look on the simpler

case of free non-relativistic electrons under a constant magnetic field H. We set to write the

Hamiltonian H of an electron of charge −e and intrinsic magnetic dipole moment µ̂, under

a magnetic field.

Just as in classical physics, we can perform the minimal coupling of a free particle to a

magnetic field by substituting p̂→ p̂+ qA/c, where Â is the operator related to the vector

potential of the magnetic field and q the particle’s electric charge. Next, we consider the

coupling of the electron spin to the field by subtracting µ̂ ·H to the Hamiltonian:
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H =
(p̂− eA/c)2

2m
− µ̂ ·H. (1)

Using the Bohr magneton (µB = e~/2mec = 0.927 × 10−20 erg/gauss) and the spin

gs-factor of gs ≈ 2 for the electron, the intrinsic magnetic moment can be rewritten as

µ̂ = −gsµBŜ/~, where Ŝ is the spin operator of projected eigenvalues sz = ±~/2.

In order to determine what are the energy levels of these particles, we can orient the

magnetic field on the ẑ direction and, using the gauge invariance of the magnetic field, the

vector potential operator is taken to be A = −Hyx̂. The hamiltonian becomes

H =
1

2m

(
p̂x +

eHy

c

)2

+
p̂2
y

2m
+

p̂2
z

2m
+
gsµB
~

ŝzH. (2)

Since it doesn’t have ŝx or ŝy terms, the hamiltonian commutes with the ŝz operator.

The same is valid for p̂x (p̂z) because x̂ (ẑ) is not present. Therefore, these are all conserved

quantities.

As a consequence, the total wave function can be taken as an eigenstate of the spin

operator ŝz with eigenvalue sz, and we can write Schrodinger’s equation for the spatial wave

function ψ as

1

2m

[(
p̂x +

eHy

c

)2

+ p̂2
y + p̂2

z

]
ψ +

gsµB
~

szHψ = εψ (3)

with p̂x and p̂z as conserved quantities, we can use separation of variables to show that the

eigenfunction we look for is in the form

ψ = χ(y)e
i
~ (xpx+zpz). (4)

Substituting back into Schrodinger’s equation, considering the momentum operator in

coordinate space p̂ = −i~∇, we obtain the ODE

χ′′ +
2m

~2

[
ε− gsµB

~
szH −

p2
z

2m
− 1

2
mω2

H (y − y0)2

]
χ = 0, (5)

where the frequency is ωH = eH
mc

and the central coordinate on the y direction is y0 = −cpx
eH

.

The deduction of this result is in Appendix A 1.

We can readily see that this ODE is formally identical to that of the quantum harmonic

oscillator, with the addition of the spin and the free momentum in the z direction. The

energy is then
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ε(n, kz) =
~2k2

z

2m
+ ~ωH

(
n+

1

2

)
+
gsµB
~

szH, (6)

=
~2k2

z

2m
+ ~ωH

(
n+

1

2
+ σ

)
, (7)

where σ = ±1 depending on the spin eigenvalue. Note that the free particle, otherwise

having a continuum energy spectrum, becomes quantized under a magnetic field. The states

with a given value of the discrete quantum number n are known as Landau levels, and the

energy spacing of each Landau level ~ωH increases linearly with H.

The eigenfunction can be taken from the harmonic oscillator solution to be

χn(y) =
1√

π1/2aH(2nn!)
exp

[
−(y − y0)2

2a2
H

]
Hn

(
y − y0

aH

)
(8)

with aH =
√

~
mωH

and Hn as the Hermite polynomials of order n.

This eigenstate can be looked at as a similar form to the classical picture of the cyclotron

orbit of the electron, where the momentum in the direction of the field can take any value,

and the electron has a “circular orbit” on the xy plane with the cyclotron frequency ωH = eH
mc

and central coordinates (x0, y0) = ( cpy
eH
, −cpx
eH

)3. Since the z-coordinate is not influenced by

the field, the semi-classical orbit of the electron has a cylindrical form, called the Landau

tube.

The next step is to determine the degeneracy of each Landau level. For this, consider the

electron at its fundamental state, confined in a box of size Lx, Ly and Lz. By applying the

boundary conditions on the wave function (Eq. 4), the wave number becomes quantized as

kx =
2π

Lx
m, (9)

where m is an integer quantum number. The value of m is further restricted when you

consider y0 = c~kx
eH

, that can be thought as the y-coordinate for the center of the oscillatory

wave function. The center must physically lie within the system (0 ≤ y0 < Ly) resulting in

kx <
eHLy
c~

. (10)

3 x0 can be shown to be a conserved quantity as well and is the constant that appears in the place of y0,

when the problem is solved using another gauge, with the magnetic potential vector A = Hxŷ for the

magnetic field instead of A = −Hyx̂
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Combining both results:

0 ≤ m <
eHLxLy

2πc~
. (11)

The degeneracy of the Landau levels is given by the maximum value of m,

η =
AH

φ0

, (12)

where H is the field, φ0 = hc
2e

is the flux quanta, and A is the area of the box.

Notice that the degeneracy of the Landau levels increases with applied field. This effect,

combined with the energy spacing increase, will lead to an oscillatory behaviour on the

internal energy of a multiparticle system, and is the origin of the de Haas-van Alphen

oscillations.

2.2. The periodicity of the oscillations

In a system of N non-interacting electrons, when a magnetic field is applied, the levels

n = 0, 1, 2, ..., k − 1 will be fully occupied with η electrons each, while the level n = k will

be partially occupied with λη electrons. Thus we have N = η(k + λ) electrons, and using

Eq. 12

k + λ =
Nφ0

A

1

H
≡ H0

H
, (13)

where H0 = Nφ0
A

is the minimum field required to put all the electrons in the lowest Landau

level (k = 0).

Notice that k has an integer value and λ ∈ [0, 1), so we can define

k =

[
H0

H

]
, λ =

H0

H
−
[
H0

H

]
, (14)

where [x] represents the integer value of x, rounded down.

The energy of the entire system is obtained simply by summing over the energies of

individual electrons. By taking Eq. 6, considering kz = 0 and that the overall contribution

of spin is cancelled out, we get

E(H) = η~ωH

[
k−1∑
n=0

(n+
1

2
) + (k +

1

2
)λ

]
, (15)
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that can be further simplified to (details in Appendix A 2)

E(H) =
N2π~2

2mA
+

N~ωH
2(k + λ)

λ(1− λ), (16)

and, considering that the energy at null magnetic field and temperature is

E(H = 0) =
N2

A

π~2

2m
, (17)

the energy can be represented in the much simpler form

E(H)

E(H = 0)
= 1 +

(
H

H0

)2

λ(1− λ). (18)

From equation 18, it can be seen that the energy of the system increases with H2 and,

most importantly, Eq. 14 shows that the filling of the last occupied Landau level (λ) vanishes

when H0

H
is an integer, that happens periodically with 1

H
. The energy will follow that same

oscillatory pattern.

Since the magnetization is defined as

M = −∂E
∂H

, (19)

then M will also oscillate with a constant period at 1
H

∆

(
1

H

)
=

1

H0

=
2eA

hcN
. (20)

In order to further simplify this relation, we first need to find the Fermi energy of the free

electrons in this closed box. Since the energy eigenvalues are evenly spaced in momentum

(see Eq. 9) from ε = 0 up to ε = εF , the system’s energy without a magnetic field can be

redefined as all N electrons at half the Fermi energy

E(H = 0) =
N2

A

π~2

2m
≡ N

εF
2
. (21)

With the Fermi momentum defined from εF =
~2k2F
2m

and the Fermi area Af = πk2
F , the

period of oscillation (Eq. 20) can be inverted to result in

F =
~c

2πe
Af , (22)
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where F is the frequency of oscillation in units of the applied magnetic field (Oe in CGS or

A/m in SI).

This area is fixed for a given number of electrons, but the amount of Landau tubes that

fit in it changes depending on the applied field. The radius kp of the semi-classical Landau

tube of level p is

~2k2
p

2m
=

(
p+

1

2

)
~ωH ⇒ k2

p =

(
p+

1

2

)
2πeH

~c
, (23)

and because of this result, the oscillations can be seen as the “popping out” of the Landau

tubes of the Fermi area.

Even though this was deduced for the case of free non-relativistic electrons, Onsager

predicted that fermions in metals exhibit the exact same periodicity relation of Eq. 22.

In this case, Af acts as the extremal (inner or outer) areas of the Fermi surface cross-

section perpendicular to the applied field, where the dHvA effect can be interpreted as these

”poppings” of the Landau tubes in and out of the Fermi surface [31].

The phase of these oscillations will depend on whether the area of the Fermi surface

surrounds an electron or a hole pocket [33], or in the case of topological materials, if the

Dirac fermions gain an addition Berry phase when going around the cyclotron orbit [34].

2.3. General form of oscillations

While under ideal conditions the Fermi Surface (FS) would be a sharp mathematical

object, the FS in reality is split into two different sheets by the Zeeman effect, and broad-

ened from the effects of finite temperature and impurity scattering. As a result, the dHvA

oscillation is no longer described by a pure periodic function, but several periodic functions

with slightly different frequencies and phases that contribute to generate a single damped

oscillation. In fact, these effects pose an enormous challenge to observe the dHvA effect, that

can only be observed in very particular situations. In this section, these damping effects and

the general form of the oscillation will be discussed, based on the developments described

by Shoenberg [33].

A finite temperature introduces an energy of order kBT to the fermions close to the Fermi

surface, requiring a large enough energy difference between the Landau levels. This imposes

the need for low temperatures and high magnetic fields to observe the dHvA effect, and
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results in the first damping factor

RT =
αTµ/B

sinh(αTµ/B)
, (24)

where α = 2π2kBm0/~e and µ = m ∗ /m0 is the effective mass in units of the free electron

mass.

The second damping effect comes directly from the impurities on the crystalline lattice,

where the broadening of the energy levels will now be of order ~/τq, with τq as the quantum

relaxation time of the charge carriers. The Dingle damping factor is found to be

RD = exp[−αTDµ/B], (25)

where the Dingle temperature TD is a material constant defined by TD = ~/(2πkBτq). It is

also possible to find the quantum mobility of the charge carriers µq = eτq
m∗ .

Finally, the spin reduction factor is a consequence of the lifted spin degeneracy under a

magnetic field, from the Zeeman effect. The superposition of the spin up and spin down

dHvA osccilations contribute with a constant damping of

RS = cos
(π

2
gµ
)
, (26)

where g is the Landé g factor of the total angular momentum.

Combining such effects on a quantum statistics framework, one can determine the free

energy and, consequently, the oscillation on the magnetization. This was first developed

by Lifshitz-Kosevich in 1956 [32, 33], and further adapted to relativistic fermions [34] and

materials with lower dimensions [35]. There are still other damping effects from sample

and magnetic inhomogeneities that are not considered relevant to this work. The revised

Lifshitz-Kosevich formula is

∆M ∝

(
B

|∂2AF

∂k2
|

)λ ∞∑
r=1

(−1)r

r3/2
RTRDRS sin

[
2πr

(
F

B
− γ + δ

)]
, (27)

where |∂2AF

∂k2
| is the curvature of the FS and λ is 1/2 (0) for 3D (2D) materials. The dimension

dependent phase δ is ±1
8

for 3D surfaces (0 for 2D), the sign depending on whether the area is

a minimum or a maximum of the surface. The sum over r represents the different harmonics

of the same oscillation, but in these works only a single harmonic is observed (r = 1).

The phase γ is simply +1
2

in regular metals, but charge carriers in topologically non-trivial
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Fermi surfaces gain an additional dependence on the geometric Berry phase ΦB, resulting

in γ = 1
2
− ΦB

2π
, where ΦB = π if the Fermi surface area generating the oscillation is directly

around the Dirac crossing point. [34, 35]

Finally, Eq. 27 can be further simplified from the considerations above to

∆M ∝ −B1/2RTRDRS sin

[
2π

(
F

B
− γ + δ

)]
. (28)

3. EXPERIMENTAL METHODS

This section aims to explain all the experimental methods used in this work, starting with

the flux growth technique used to obtain the single crystals, followed by the characterization

methods used to determine the structural phase, the resistivity and magnetic properties of

NiTe2.

Analyses of the results were made using Python 3.8 [36] , with the NumPy [37] package

for importing/processing data, matplotlib [38] for plotting and finally the SciPy [39] package

for performing curve fitting, interpolation and the Fast Fourier Transforms (FFT) required

for obtaining the dHvA frequencies.

3.1. Single crystal synthesis

Condensed matter physics is often focused on the study of macroscopic manifestation of

delicate quantum phenomena, such as superconductivity and magnetism, that requires high

quality samples as a starting point for any experimental work in the area. The visualization

of such effects are usually highly dependent on the crystallographic direction and might be

suppressed by impurities in the lattice, well exemplified in the de Haas-van Alphen effect

described in Section 2.

By growing the material in single-crystalline form, extrinsic factors such as impurities,

grain boundaries, or secondary phases can be minimized, while enabling the study of orien-

tation dependent properties. This session is aimed at explaining the flux method used for

obtaining the NiTe2 single crystals.

The flux method consists on providing a stable liquid environment for the reagents to

be dissolved and later crystallized into the desired phase upon cooling. The flux is often a

metallic element with low melting point and few stable compounds formed with the reagents,
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but in the case of NiTe2, a self-flux method was possible, where Te is not only part of the

compound, but is also the flux.

An advantage of flux growths can be easily seen by considering that Ni can be easily

dissolved in liquid Te (above Te’s melting point at Tf = 450 °C), drastically reducing the

required growth temperature from Ni’s melting point at Tf = 1455 °C. The proportion of Te

to the other reagents will determine what phase is the most stable thermodinamically [40],

and by cooling it slowly from high temperatures, the crystallization will occur in fewer nu-

cleation sites, reducing the number of crystals, but increasing their size and crystallographic

purity. The major disadvantage is that the excess reagent can sometimes become impurity

layers or pockets trapped inside the single crystal, but the observation of the de Haas-van

Alphen effect indicates that this is not the case in our NiTe2 crystals.

Following Xu et al. [19], about 8 g of reagents at a Ni:Te molar proportion of 1:8 (instead

of the stoichiometric 1:2 ratio) was used systematically to obtain NiTe2 crystals. Other

proportions, with 90, 92 and 94% of Te were tested, but no significant improvement was

found.

The reagents used were all produced by Alfa Aesar [41] with high purity (99.9999% for

Te and 99.95% for Ni). After careful weighing, the elements were sealed under vacuum in a

quartz tube with some quartz wool on top, that is later be used for separation of the flux

and the crystals. The setup can be visualized in Fig. 1a.

This tube is then placed in a box furnace (Fig. 2a) and submitted to a temperature ramp

program, represented in Fig. 1b. The mixture is initially heated to 900 °C, guaranteeing all

the elements are melted into a homogeneous liquid alloy, followed by fast cooling to right

above the melting temperature of the compound (700 °C for NiTe2), then crystallization

starts upon slow cooling (2 °C per hour) through the melting temperature and below. As

crystals grow, the composition of the liquid changes and new phases might form. This can

be avoided by stopping the temperature ramp still at a hot enough temperature (500 °C for

NiTe2), removing the tube from the furnace and placing it upside down in a centrifuge. The

quartz wool inside will allow the passing of the liquid flux, separating the solid crystals from

the remaining flux. Large plate-like NiTe2 single crystals were obtained, with size ranging

from of about 1× 1× 0.1 mm to 10× 10× 0.5 mm, as seen in Fig. 1c.
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(a) (b)
(c)

Figure 1: (1a) Diagram of a quartz ampoule, where the reagents are sealed under vacuum

and submitted to the temperature ramp. (1b) Temperature ramp used on the single

crystalline growth of NiTe2. (1c) Single-crystals of NiTe2 obtained by the self-flux method.

3.2. Structural characterizations

In order to confirm the phase of the grown material, selected single-crystals where crushed

into polycrystalline powder with mortar and pestle. The powder X-ray diffraction measure-

ments were performed using a Bruker D2 Phaser (Unicamp) and a Bruker D8 Focus (UFABC

Multiuser Central [42]) diffractometers.

Refinement of the diffraction data was performed using the FullProf Suite [43], with the

aid of the automatization tool AutoFP [44].

3.3. Electronic transport

In order to measure the NiTe2 resistivity, the four-probe technique was used in elongated

bar-shaped samples cut from the grown single crystals. After cutting the sample surface

was cleaned using ultra-fine sand paper (1500 grit and above). Then, four platinum wires of

diameter 0.05 mm were placed parallel to each other along the sample surface using silver

epoxy (Fig. 3a). The two outer wires pass a uniform current through the sample and the

potential difference is measured by the two inner wires. By utilizing a high impedance

voltmeter, the intrinsic resistance of the experimental setup can be greatly reduced and,

from Ohm’s Law (U = R.I), the resistivity can be found considering the sample geometry
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(a) (b)

Figure 2: (2a) Shows the Lindberg Blue M BF51542C Heavy Duty Box Furnace and (2b)

the Sorvall Primo 4x100 ml metal cup centrifuge, used on the flux method for single

crystalline growth.

ρ =
V

I

τw

L
, (29)

where τw
L

is the geometrical parameter: τ is the thickness, w is the width and L is the length

of the sample. It is worth noting that this assumes a crystal with right angles and a uniform

current flow, so the setup has to be prepared with care.

After the samples and contacts are prepared, the other end of the four platinum wires are

soldered to an electrical resistivity puck, which is then inserted in a comercial PPMS (Phys-

ical Property Measurenment System) Evercool 9 by Quantum Design (Fig. 3b), available at

the UFABC Multiuser Central [42].

3.4. Magnetic characterization

The de Haas-van Alphen effect requires not only very pure single crystals, but also very

sensitive equipment with high magnetic fields and low temperatures. For that matter,
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(a)
(b)

Figure 3: (3a) Representation of a single crystal with the platinum wires used in the

4-probe method (see text). 3b Quantum Design’s Evercool 9 PPMS (Physical Property

Measurenment System), present at the UFABC Multiuser Central.

a Quantum Design MPMS (Magnetic Property Measurement System), equipped with a

SQUID (Superconducting Quantum Interferometer Device) sensor, was used for the mag-

netic experimental studies. The equipment at the UFABC Multiuser Central reaches fields

of up to 7 T and temperatures as low as 2 K, enough to observe dHvA oscillations in NiTe2.

The VSM (Vibrating Sample Magnetometer) option used measures the sample magnetic

moment (M) by vibrating it at a specified frequency at the center of the device sensors,

thus altering the induction field (B = H+4πM). The oscillating value of the magnetization

field will generate an alternating current on the SQUID, allowing it to measure magnetic

moments as low as 10−7 emu.

Figure 4: Quantum Design MPMS present at the UFABC Multiuser Central [42].
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Since NiTe2 samples usually have a relatively low magnetic moment (10−5 − 10−6 emu),

and the de Haas-van Alphen effect is a collective phenomena, it is better to measure several

stacked sheets of the material (about 30 mg) rather than few-layer cleaved surfaces. Some Te

from the flux might be present, but its diamagnetic response does not affect the oscillations

and can be removed later with data processing.

The method used to insert the sample in the MPMS depends on which crystallographic

direction is meant to be parallel to the applied magnetic field (H). For H ‖ ab, the single-

crystal is attached to the surface of a plastic straw (cut to be 66 mm long) using a bit of

vacuum grease, and secured by wrapping the whole setup with another plastic straw cut in

the axial direction. Kapton tape is used to ensure the outer straw won’t move, and small

circular holes are made far from the sample to allow proper venting. For H ‖ c, the sample

is placed inside the plastic straw, fastened between two folded straw pieces. These setups

are illustrated in Fig. 5.

Figure 5: Representation of the straw sample holders used in the MPMS for magnetic

measurements. The upper straw is the setup used for H ‖ ab and the lower one is used for

H ‖ c. The dark grey rectangle represents the planar material, the orange on the sides are

the Kapton tape.

In this work, only the de Haas-van Alphen effect with H ‖ c will be studied, because it

showed larger amplitudes of oscillation when compared to the those observed when H ‖ ab.

Measurements were performed in a reduced field range between 7 T and 3 T, using a small

sweep rate of 10 Oe/s.

The molar magnetization M can be determined by dividing the magnetic moment mea-

sured in the MPMS by the number of mols n in the sample measured. Finally, the magnetic

susceptibility χ is obtained by calculating the numerical derivative of the magnetization M

relative to the applied magnetic field H.
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4. RESULTS AND DISCUSSION

NiTe2 single crystals were obtained in the hexagonal 1T-type structure, space group

P3m1. This material has layers of Te bounded by van der Waals interaction, classifying it

as a 2D material (Fig. 6a). X-ray diffraction confirmed the correct phase was obtained, with

cell parameters a = b = 3.852(1) Å and c = 5.266(3) Å. The χ2 = 3.06 is a representation

of the quality of the sample obtained (Fig. 6b).

(a)

(b)

Figure 6: (6a) Unit cell of the 1T NiTe2 structure, where the Te-Te planes can be seen

stacked along the c-axis. (6b) Powder X-ray diffraction pattern of NiTe2, with calculated

pattern showing the correct phase was obtained. The χ2 of 3.06 shows the quality of the

refinement.

In Fig. 7a, the resistivity of NiTe2 is shown and features a linear increase with temperature

above ∼ 50 K. This is typical behaviour in metals, where the disordered heat energy agitates

the ions, which scatter the charge carriers in the Fermi liquid state, increasing the resistance.

By dividing the resistivity at T = 300 K by the value at zero temperature (or the lowest

available temperature), the residual resistivity ratio (RRR) can be obtained. In the case of

an ideal metal with no impurities to scatter the charge carriers, the resistance would vanish

at 0 K and the RRR would be infinitely large, so experimentally large finite values are a

sample quality indicator. In NiTe2, the value of RRR = 53.0 is another indication of the
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high quality of the single crystals obtained through the self-flux method.

(a) (b)

Figure 7: (7a) Resistivity of NiTe2 showing a tipical metallic behaviour, with a linear

dependency on temperature and a residual resistivity ratio (RRR) of 53. The inset shows

the sample measured with the four probe method. (7b) In blue, the susceptibility of NiTe2

is shown, and in red, the data is plot according to the Curie-Weiss relation subtracting the

constant Pauli paramagnetism (see main text). The measurement was taken with an

applied field of 10 kOe, parallel to the ab-plane.

The magnetic moment of NiTe2 showed a constant paramagnetic dependence from room

temperature down to about 40 K. At low temperatures, the susceptibility was fitted consid-

ering the Curie-Weiss law, with a temperature-independent susceptibility χ0 (Fig. 7b):

χ =
C

T − Tc
+ χ0, (30)

where C is the Curie constant and Tc the Curie temperature.

Considering a microscopic theory of magnetism, the Curie-Weiss behaviour is derived

from the magnetic moments and spins of the atoms in the lattice, where Tc represents the

maximum temperature at which spontaneous magnetization occurs, and C is directly related

to the magnetic moment of the system, through the relation:

C =
µ0NA

3kB
µ2
eff ⇒ µeff ≈

√
8C, (31)

where the approximation is done in CGS gaussian units, and the effective moment is given

in Bohr magnetons (µB) [45]. An effective magnetic moment of 4.44(2)×10−2 µB was found,
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which is orders of magnitude smaller than in a regular paramagnet, therefore most likely

comes from small amounts of impurities in the reagents.

The temperature independent susceptibility was found to be χ0=7.51(4)x10−5 emu/mol,

and we can analyze it to obtain an approximation for the density of states at the Fermi level

(based on the analysis of Jiao et al. [46]). In general form, this value χ0 is a composition

of the Pauli paramagnetism (χp), Landau diamagnetism (χL), core diamagnetism (χc) and

Van Vleck paramagnetism (χvv). Since NiTe2 has metallic behaviour with low effective

moment, the susceptibility observed will mainly come from itinerant electrons, meaning

that the χvv can be disregarded when compared to χp. χL can be estimated as ≈ −1
3
χp by

assuming the diamagnetism is not enhanced by electron-phonon interactions (reasonable at

low temperatures). Finally, the core diamagnetism can be calculated directly as χc=−4x10−5

emu/mol from the tabled values of reference [47]. We then get χp=
3
2
(χ0 − χc)=1.726x10−4

emu/mol, consistent to other topological semimetals. From this, we can obtain the density

of states at the Fermi level ηF using the Pauli susceptibility expression from Fermi-liquid

theory χP = µ2
BηF , resulting in ηF = 5.15 states/(eV f.u.). 4

From the dependence of the magnetization with applied magnetic field for several dif-

ferent temperatures (inset Fig. 8a) it is possible to see the initial raw manifestation of the

quantum oscillations originated from the dHvA effect. By subtracting a linear background

and plotting the magnetization as a function of the inverse magnetic field (as suggest by

Eq. 27), two summed periodic oscillations of different frequencies can clearly be seen in the

main plot (Fig. 8a). The same data is shown separated by vertically shifting a fixed amount

for the different temperatures (Fig. 8b) to facilitate visualization.

The next step is to calculate the Fast Fourier Transform (FFT) of this signal to obtain the

frequency and amplitude of each oscillation, and quantitatively observe how it changes with

temperature. Since FFT requires a linearly spaced x-axis, a Savitsky-Golay filter (cubic

interpolation in a window of 7 data points) was used to interpolate and further reduce

experimental noise. The resulting FFT (Fig. 9a) shows two clear peaks, labelled as Fα and

Fβ for the lower and higher frequency, respectively.

In order to retrieve information of the FFT peaks, a Lorentzian curve was fitted for each.

4 It is important to remember that the magnetic susceptibility (in emu/mol) is calculated dividing by the

magnetic field in cgs units of G, so the Bohr magneton constant has to be taken considering 1 T = 104 G

before calculating the density of states.
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(a) (b)

Figure 8: (8a) Background-subtracted magnetization as a function of the inverse magnetic

field (dHvA plot). The inset shows the originally measured magnetization as a function of

applied magnetic field. (8b) The same dHvA plot, but with each temperature curve

displaced to facilitate visualization.

(a) (b)

Figure 9: (9a) Fast Fourier Transform of the dHvA oscillations for all measured

temperatures. (9b) Normalized amplitude of the FFT peak for each frequency, as a

function of temperature.
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The center gives the frequency of oscillation of Fα = 50.5(5) T (Fβ = 393.6(6) T) and, using

Onsager’s relation (Eq. 22), the Fermi surface area is determined to be AαF = 0.0767(9)

nm−2 (AβF = 0.598(1) nm−2). The height of the peaks are temperature-dependent and have

been plotted normalized to the extrapolated 0 K height (Fig. 9b). In the Lifshitz-Kosevich

theory, this temperature dependence is uniquely defined by the RT damping factor (Eq.

24), that fits very well the experimental data, giving an effective mass of m∗α = 0.13(3)m0

(m∗β = 0.20(4)m0) , where m0 is the free electron mass5. These very low values are similar

to the ones reported in literature [19, 48], and are justified from the carriers’ relativistic

properties expected from the linearly dispersing band structures shown in DFT calculations

[19, 20, 48].

The scattering properties of the charge carriers can now be analyzed from the Dingle

damping factor on the oscillation amplitudes. The first method used to determine the

Dingle temperature TD is by directly fitting the LK formula (Eq. 28) to the obtained signal.

In our case, the two summed oscillations would result in too many fitting parameters, so we

can further simplify by passing a band filter in the FFT, which consists of making the inverse

Fourier transform in a frequency range only around the desired peak. This deconvolution

procedure separates the two oscillations, and the result can be seen in Fig. 10a for the

temperature of 2 K.

Now, the separate curves can be fitted using Eq. 28, where we can use the pre-

viously calculated value for the relative mass µ and obtain the Dingle temperature of

TαD = 7.9(1.0) K (T βD = 9.1(1.9) K), resulting in the relatively large quantum relaxation

times of ταq = 0.15(4) ps (τβq = 0.13(3) ps). The fitted oscillations can be summed up to

show good agreement with the pure signal obtained at 2 K (Fig. 10b).

The second and more standard method to obtain the Dingle temperature is based on

linearization of the LK formula. By determining absolute values of the maximum and

minimum amplitudes of the deconvoluted oscillations ∆MAmp, Eq. 28 can be rearranged to

log

(
∆MAmp

B1/2RT

)
= −αTDµ

1

B
+ log(C), (32)

where C is the proportionality constant in the LK formula. The resulting plot for the data

obtained at 2 K is shown in Fig. 11a. From the angular coefficient of the linear regression,

5 The uncertainties are calculated in Appendix B, where the relatively large error for the mass is explained.
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(a) (b)

Figure 10: (10a) dHvA oscillations at 2 K before (in black) and after deconvoluting the

frequencies through a band filter. (10b) Full dHvA oscillation fitted with the LK equation

(Eq. 28). The fits were made in the deconvoluted frequencies, and later summed to obtain

the curve seen here.

the Dingle temperature is determined to be TαD = 5.1(1.0) K (T βD = 7.9(1.0) K), well in

agreement with the values obtained through the previous method. All values, as well as

the quantum relaxation times τq and the quantum mobilities µq obtained are reported in

Table I.

Finally, the topological aspect of the Fermi surface can be probed by finding the Berry

phase in the dHvA oscillations. The simplest method to find the oscillation phase, as in

the case of the Dingle temperature, consists on fitting the LK formula (Eq. 28) in the

deconvoluted frequencies. But the most standard way is by assigning integer (half-integer)

indices to the maximum (minimum) of the magnetic susceptibility, in the so-called Landau

Fan Diagram. First, consider the differential susceptibility ∆χ = d(∆M)
dB

as

∆χ ∝ sign(RS)cos

[
2π

(
F

B
− γ + δ

)]
. (33)

Without considering the sign(RS), the maximum of such oscillation appears when the

argument of the cosine function is an integer multiple of 2π, which gives the linear relation

N = F 1
B
− γ + δ. Notice that the angular coefficient is the frequency of oscillation, and the

intercept is −γ + δ. The integers must be displaced until N(0) ∈ [−1, 1].
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(a) (b)

Figure 11: (11a) Linearization of the amplitude of oscillation through the Dingle plot,

where TD can be retrieved from the linear coefficient. (10b) Landau fan diagram,

commonly used to find the phase of the oscillation. In the inset, the region close to 0 is

zoomed in.

As suggested from Eq. 33, the sign of the spin reduction factor RS = cos
(
πgµ

2

)
is important

in this case because it changes the phase by a factor of π, precisely the difference between

a trivial and a topological material. So there is still a need to find the value of the Landé

g-factor of the total angular momentum. As described in Session 2 2.3, RS appears due to

the splitting of the degenerate bands from the Zeeman effect. The simplest method to find

g consists simply in applying a high magnetic field, making this splitting large enough to

show a slight difference in the frequency of oscillation. An example where this is possible

is for the nodal-line topological semimetal ZrSiS [49], where the g factor is found to have a

large value of g ≈ 38, but measurements in NiTe2 up to 31 T show no such behaviour [48].

Alternatively, the spin-zero method used regularly in high-Tc cuprate superconductors

and other quasi-2D materials, do not require a large Zeeman splitting, but is only completely

accurate in a 2D Fermi surface. In this situation, the effective mass gets progressively heavier

as the applied magnetic field gets tilted from the normal vector of the 2D-plane by an angle

θ, following a relation of the form µ(θ) = µ(0)/cos(θ). Then, the argument inside RS gets

a dependence on the direction of the applied field, and one can determine g from the angle

where the amplitude is null. An attempt to do this for NiTe2 was performed by Zheng et
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al. [48] but they found a large anisotropy with inconclusive results, a consequence of doing

this analysis in a material with a 3D-FS.

Unfortunately, there is no other way to find the g factor from the dHvA oscillations,

meaning the Berry phase determined here might be altered by π. Nevertheless, it is still

possible to see if ΦB 6= 0, and conclude that the material is topologically non-trivial. The

results for RS > 0 are reported in Table I.

From theoretical band structure calculations [19, 48], the α-band dHvA oscillation comes

from spherical-like hole pockets where only outer extremal areas are available to the cyclotron

orbits. This means we expect δ = −1/8 for α-band. Meanwhile, in the β-band, the Fermi

surface looks like a distorted cylinder where both outer and inner extremal orbits are possible,

but each with very different frequencies. Since the inner cyclotron orbits show a frequency

value close to the Fβ calculated in this work, and the outer area relates to a frequency higher

than 1000 T, it is safe to assume the dHvA oscillation from this band comes from the inner

orbit (δ = +1/8). In Table I, the corresponding Berry phases are marked in bold.

Table I: Oscillation frequency (F ), Fermi surface area (Af ), Dingle temperature (TD),

effective charge carrier mass (m∗/m0), quantum lifetime (τq), quantum mobility (µq) and

Berry phase (ΦB) of NiTe2 extracted by the de Haas-van Alphen oscillations analyses. The

expected values for the dimension-dependent δ are marked in bold (see main text).

Band
F Af TD m∗/m0 τq µq ΦB

a

(T) (10−2nm−2) (K) (ps) (103 cm2V−1s−1) δ = −1/8 δ = 0 δ = +1/8

α
50.5(5)b 7.67(9) 5.1(1.0)b

0.13(3)
0.24(5) 3.16(92) 0.67(31)πb 0.42(31)πb 0.17(31)πb

50.08(1)c 7.609(1) 7.8(1.6)c 0.15(6) 2.05(59) 0.75(1)πc 0.50(1)πc 0.25(1)πc

β
393.6(6)b 59.8(1) 7.9(1.0)b

0.20(4)
0.15(4) 1.34(39) 1.38(17)πb 1.13(17)πb 0.88(17)πb

393.82(1)c59.831(2) 9.1(1.9)c 0.13(3) 1.16(34) 1.33(1)πc 1.08(1)πc 0.83(1)πc

a This assumes RS > 0, for RS < 0 sum π; b F from the FFT peak frequency, TD from the Dingle plot,

and ΦB from Landau fan diagram; c Calculated from fitting of LK formula to deconvoluted oscillation.

Using these theoretical results and the values calculated from fitting the LK formula to

the oscillations, the Berry phase for the α-band is Φα
B = 0.75(1)π in the case where Rα

S > 0

and Φα
B = −0.25(1)π when Rα

S < 0. For the β-band oscillations, Φβ
B = 0.83(1)π when

Rβ
S > 0 and Φβ

B = −0.17(1)π when Rβ
S < 0. Even though we cannot further select the
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results, all of these have values differ from 0, meaning the dHvA oscillations in NiTe2 come

from topological bands and relativistic fermions.

5. CONCLUSIONS

Single crystals of the type-II Dirac semimetal NiTe2 were grown through the self-flux

method. Powder X-ray diffraction was used to confirm the correct hexagonal crystalline

phase was achieved. The highly metallic character of the sample was observed through resis-

tivity measurements and from the dominant Pauli paramagnetism of the itinerant electrons.

A small antiferromagnetic signal was observed in the magnetization, but it is attributed to

impurities in the reagent.

Most importantly, quantum mechanical oscillations on the magnetization enabled an

indirect look at the Fermi surface of NiTe2, through the de Haas-van Alphen effect. Two

different frequencies of oscillations were resolved, each related to one band crossing the

Fermi surface, showing relatively low scattering properties and relativistic effective masses of

0.13(3)m0 and 0.20(4)m0. The band topology was determined to be non-trivial, even though

the Berry phase could not be precisely obtained only through the dHvA effect analyses.

The work performed here is based on the paper by Xu et al. [19], but there are a few

important differences: (I) the Berry phase determination was not performed correctly in

the above cited paper (and most of current literature). The analysis here is performed

considering remarks made by Hu et al. [49], Shen et al. [50] and Shoenberg [33]; (II)

alternative explanation on the low antiferromagnetic signal, following the discussion by

Zheng et al. [48]; (III) additional analysis on the Pauli paramagnetic susceptibility based

on Jiao et al. [46].

Even though the experimental characterization of the Fermi surface through dHvA oscil-

lations in pure NiTe2 could not be further improved with respect to the results already in

the literature6, some preliminary results in Se-doped NiTe2 (not presented in this gradua-

tion thesis) showed that the dHvA oscillations are robust enough to survive the inevitable

disorder introduced by Se. Since this substitution is expected to allow a certain level of

tuning of the pristine material band structure, NiTe2−xSex may present an ideal platform to

6 Zheng et al. performed a study in 2020 of the dHvA oscillations on NiTe2 up to 31 T and with an angular

dependence, mapping to the entire Fermi surface [48]
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follow the evolution of the “Fermi surface” using the dHvA effect, and is planned as future

work.
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Appendix A: Some mathematical deductions

1. Getting the harmonic oscillator Hamiltonian

In our problem, Schrodinger’s equation has the form

1

2m

[(
p̂x +

eHŷ

c

)2

+ p̂2
y + p̂2

z

]
ψ +

gsµB
~

szHψ = εψ. (A1)

Using the ansatz for the eigenfunction:

ψ = χ(y)e
i
~ (xpx+zpz), (A2)

and with the momentum operators in coordinate basis as p̂y = −i~ d
dy

and that p̂x,zψ = px,zψ,

we can substitute back on Schrodinger’s equation:

1

2m

[
p2
xχ+ 2

(
eHŷ

c

)
χpx +

(
eHŷ

c

)2

χ− ~2 d2χ

dy2
+ p2

zχ

]
+
gsµB
~

szHχ = εχ (A3)

which can then be simplified to

− ~2

2m
χ′′ +

p2
z

2m
χ+

gsµB
~

szHχ+
1

2m

[
p2
x + 2

(
eHy

c

)
px +

(
eHy

c

)2
]
χ = εχ (A4)

and finally

χ′′ +
2m

~2

(
ε− gsµB

~
szH −

p2
z

2m
− m

2

(
eH

mc

)2[
y −

(
−cpx
eH

)])
χ = 0. (A5)

.

Now we can define the constants

ωH =
eH

mc
; y0 =

−cpx
eH

, (A6)

resulting in

χ′′ +
2m

~2

[
ε− gsµB

~
szH −

p2
z

2m
− 1

2
mω2

H (y − y0)

]
χ = 0, (A7)

which is the ODE for the quantum harmonic oscillator, with 2 extra terms that don’t depend

on y.
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2. Calculating the energy

In this section, the detailed calculations of the system’s energy are presented. From the

single particle energy with no kz

ε = ~ωH
(
n+

1

2
+ σ

)
,

we sum over all N = η(k + λ) electrons in each energy level:

E(H) = η~ωH

[
k−1∑
n=0

(n+
1

2
) + (k +

1

2
)λ

]
(A8)

= η~ωH
[
k

(
k − 1

2
+

1

2

)
+ (k +

1

2
)λ

]
(A9)

= η~ωH
[
k2

2
+ (k +

1

2
)λ

]
(A10)

= η~ωH
[

(k + λ)2

2
+
λ− λ2

2

]
(A11)

= N~ωH
[
k + λ

2
+
λ(1− λ)

2(k + λ)

]
(A12)

=
N2~ωH

2η
+

N~ωH
2(k + λ)

λ(1− λ), (A13)

and by considering that the cyclothron frequency ωH = eH
mc

and the degeneracy is η = AH
φ0

=

2AHe
hc

, we obtain

E(H) =
N2π~2

2mA
+

N~ωH
2(k + λ)

λ(1− λ). (A14)

Finally, we take the energy at null field and temperature as

E(H = 0) = N2 π~2

2mA
, (A15)

and with H0 = ~cN
2eA

= Nφ0
A

, the energy can be represented in a much simpler form

E(H)

E(H = 0)
= 1 +

(
H

H0

)2

λ(1− λ). (A16)

Appendix B: Calculating uncertainties

Here, the formulas for the error in the calculated quantities will be derived, using that

for a function of n variables f(x1, .., xn) the error is given by

σ2
f =

n∑
i

(
∂f

∂xi
σxi

)2

.
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First, for the Fermi surface area using the Onsager relation (Eq. 22) Af = 2πe
~c F , we

directly get

σAf
=

2πe

~c
σF = Af

σF
F
. (B1)

For the temperature damping factor, we fit (Eq. 24) and obtain the relative mass from the

fitting parameter b as µ = bB
α

. Here we want to find the relative mass µ, and the error comes

from the fitting parameter b and the field range used in the FFT (B = 1
2
[Bmin +Bmax]).

From the standard deviation of mean, we get

σB =

√
1

6

√
(Bmin −B)2 + (Bmax −B)2,

which returns a relatively high error for the effective field used to calculate the mass (about

1.5 T), and then

σµ = µ

√(σB
B

)2

+
(σb
b

)2

. (B2)

Next, we calculate the error on the Dingle temperature, with the fitting parameter d

as the decay used when fitting the full LK formula to the deconvoluted oscillations or the

angular coefficient in the linear Dingle plot, we get

σTD = TD

√(
σµ
µ

)2

+
(σd
d

)2

(B3)

In the same manner, the quantum lifetime τq = ~/2πkBTD and mobility µq = eτq/m
∗

have the error as

στq = τq
σTD
TD

; σµq = µq

√(
στq
τq

)2

+
(σm∗

m∗

)2

. (B4)

Finally, the Berry phase is determined as ΦB = 2π
(
φ− δ + 1

4
± 1

4

)
, where φ is the phase

determined through the LK fit or the intercept in the Landau Fan Diagram, so the error is

given by

σΦB
= 2πσφ. (B5)
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