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Quantum Random Access Code in Noisy Channels
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The random access code (RAC) is a communication protocol particularly useful when the com-
munication between parties is restricted. In this work we built upon works that have previously
proven quantum random access code (QRAC), in the absence of noise, to be more advantageous
than classical random access code (CRAC). Here we investigate the effects of noisy channel on the
QRAC performance when compared to its classical counterpart.

Keywords: Quantum communication, noisy quantum channels, random access code.

I. INTRODUCTION

Many aspects that distinguish a quantum system
from a classical one can be used as valuable resources
in information theory. Quantum information and quan-
tum communication, for instance, study how to use
quantum systems to implement information processing,
e.g., quantum algorithms (Deutsch [1], Shor [2], Grover
[3], etc.); Communication protocols (super dense code
[4], teleportation [5], quantum key distribution [7], etc.),
and quantum simulation . In quantum communication,
particularly, one uses quantum resources such as en-
tanglement and superposition to enhance information
transmission beyond classical limitations [16, 19].

An important example of communication protocol is
the random access code (RAC) [8]. This protocol is es-
pecially suited when there is restriction on the size of
the message. In a RAC protocol, one party, Bob, aims
to access an arbitrary subset from a data set held by
a second party, Alice, using a channel with restricted
information capacity. In this scenario the information
cannot be sent deterministically because the amount of
information is larger than the channel capacity. How-
ever it is possible to use strategies of message encoding
and decoding that improve Bob’s probability of access-
ing correctly the information. Moreover, the RAC pro-
tocols can be used for network coding [10], semi-device
independent key distribution [11], reduction of commu-
nication complexity [8], etc.

It was shown that using quantum RAC the probabil-
ity of success can be improved for different set of in-
formation held by Alice and the channel capacity [12].
However, to the best of our knowledge, many of works
that have dealt with RAC have not considered noise
channels. Even with our best effort, we cannot isolate
a system from its surroundings completely [13]. Based
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on that, it becomes evident in order to construct a re-
alistic RAC protocol one has to account for the noise
introduced in the system due to its environment.

In this work, we investigate how system-environment
interactions affect Bob’s probability of accessing a given
subset of the information held by Alice.

In section (II) we formally introduced the random
access code protocol, its main features, and showed the
main differences between quantum RAC and classical
RAC. In section (III) we presented a basic overview of
theory of open quantum system and how it relates to
concept of noisy quantum channels, and we also intro-
duce the three noisy quantum channels studied in this
work: depolarizing, amplitude damping, and dephasing
channels. In section (IV), we introduce, in passing, the
concepts of Von Neumann entropy and fidelity, and how
they relate to the present work. In section (V) we ap-
plied the concepts laid out in the previous section to
study the behaviour and performance of quantum RAC
in those noisy channels. In section (VI) we summarize
the conclusions and discuss new perspectives for futher
studies.

II. RANDOM ACCESS CODE

In a RAC, Bob aims to access an arbitrary subset of a
set of information held by Alice, with average probabil-
ity of success P . Even though the communication be-
tween parties is restricted, they can improve the proba-
bility of success by improving the communication strat-
egy [12].

Before proceeding, we shall introduce a very use-
ful shorthand notation for both classical and quan-
tum RAC. Suppose Alice has a n-letter string (word),
with each letter being encoded in d-level systems, i.e.,
X = x0...xn−1, where xi ∈ {0, ..., d − 1}. Bob, upon
receiving Alice’s string, wishes to access an arbitrary
letter xj with average success probability Pn,d. This
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can be summarized as,

n(d) Pn,d−−−→ 1. (1)

A. Classical Random Access Code

A RAC is classified as classical when the information
is encoded in classical d-level systems (see figure 1).

The simplest example of CRAC is in the form of 22 →
1. The best strategy, in this case, is the one Alice always
sends to Bob the value of her first letter (x0). Whenever
Bob is interested in x0 the probability is P0 = 1, but
if he is interested in x1 he is forced to guess. Since x1

can take up two values, 0 or 1, Bob has a probability
P1 = 1/2 of success. Thus, Bob’s average probability of
success in this scenario is PC = (P0 + P1)/2 = 3/4.

A case more general than the one mentioned above is
the scenario in which x0 and x1 are encoded in d-level
system, i.e 2d → 1. In analogy to the previous case,
Bob’s average probability of success is given by [12],

PC =
1

2

(
1 +

1

d

)
. (2)

It should however be emphasized that although there
are other families of RACs for which n > 2, that is,
the cases in which Alice has words with more than two
letters (X = x0x1...xn−1), we are only considering in
this work the particular case of two-lettered words (n =
2). From now on, when we reference the word RAC (or
its derivatives) we are actually referencing the 2d → 1
RAC.

Figure 1. Schematics of a classical RAC protocol.

B. Quantum Random Access Code

In the quantum RAC (QRAC), whenever Alice has a
two-letter word X = x0x1, she encodes it in a quantum
d-level system [12] (see figure 2). A state for such sys-
tem can be constructed using two mutually unbiased
bases (MUBs), namely, the computational basis {|l〉}
and the Fourier basis |el〉 = (1/

√
d)
∑d−1
k=0 ω

kl |k〉, with

ω = exp{2πi/d}. These bases together allow us to en-
code the state as:

|ψx0x1
〉 = N(|x0〉+ |ex1

〉), (3)

where N = 1/
√

2 + (2/
√
d) is the normalization con-

stant.
Whenever Bob is interested in x0, he performs a mea-

surement in the computational basis |l〉,

P0(l) = |〈l|ψx0x1〉|
2

= N2

∣∣∣∣δl,x0 +
ωx1(l−x0)

√
d

∣∣∣∣2, (4)

and when he is interested in x1, he measures in the
Fourier basis |el〉,

P1(l) = |〈el|ψx0x1〉|
2

= N2

∣∣∣∣ω−x0x1δl,x1 +
ω−lx0

√
d

∣∣∣∣2, (5)

which gives an overall average probability of success
of

PQ =
1

2

(
1 +

1√
d

)
. (6)

It is worth mentioning that, because the states
|ψx0x1

〉 are symmetrically distributed in the Bloch (hy-
per)sphere (see figure (3), where this is illustrated for
d = 2), the probabilities of all outcomes are the same
(equal to PQ) regardless of which string x = x0x1 Alice
has or which letter Bob is interested in [12]. As we will
see in sections III and V, this is not always the case for
noisy channels. For instance, the dephasing and am-
plitude damping destroy this “symmetry”, thus making
some outcomes more likely than others.

Figure 2. Schematics of a quantum RAC protocol through
a noiseless channel.

We conclude by comparing (2) and (6) that, in the
absence of noise, Bob’s probability of success in the
quantum case is always greater than the classical one
(PQ/PC > 1 ∀d).
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Figure 3. Illustration of the distribution of the states |ψx0x1〉
on the Bloch sphere when d = 2. The states are symmetri-
cally distributed and form a square of whose each of them
is a vertex.

III. OPEN QUANTUM SYSTEMS AND
DYNAMICAL MAPS

Even though, the time evolution of a closed system
can be described in terms of unitary evolution, the dy-
namics of an open quantum system generally cannot
[13]. In the simplest scenario, one has an open quan-
tum system, S, which interacts with another quantum
system, the environment E [14] (see figure 4).

Figure 4. Representation of an open quantum system.

Therefore, the open system S is a subsystem of a larger
system S + E. Because S + E is a closed system, its
dynamics can be in general described in terms of unitary
operators. On the other hand, the subsystem S cannot
[13]. The Hamiltonian for the total system S + E is,

H = HS ⊗ IE + IS ⊗HE +HI , (7)

where HS is the self-Hamiltonian of S, HE is the free-
Hamiltonian of E, and HI is the interaction Hamilto-

nian, and IS and IE are the identity operators for S and
E, respectively. The time evolution operator of S + E
is given by U(t, t0 = 0) = exp{−iHt} in natural units.
Let ρ(0) be the density operator describing S + E at
an initial time t0 = 0. At time t > t0 the state of the
whole system will be,

ρ(t) = Uρ(0)U†. (8)

Now assuming that the state ρ(0) is initially uncorre-
lated, that is,

ρ(0) = ρS(0)⊗ ρE(0), (9)

the evolution of the system S + E from t0 = 0 to t > 0
may be written as

ρ(t) = UρS(0)⊗ ρE(0)U†. (10)

Let {|ν〉} be a basis for E. We assume, without loss
of generality, that the initial state of E is |0〉, hence
ρE(0) = |0〉 〈0|. Therefore, equation (10) becomes

ρ(t) = U (ρS(0)⊗ |0〉 〈0|)U†. (11)

The state of the system S is found by performing a par-
tial trace over the degrees of freedom of the environment
ρS(t) = TrE [ρ(t)], which can be written explicitly as,

ρS(t) = TrE [U (ρS(0)⊗ |0〉 〈0|)U†]

=
∑
ν

〈ν|U |0〉 ρS(0) 〈0|U† |ν〉

=
∑
ν

Kν(t)ρS(0)K†ν(t),

(12)

where Kν = 〈ν|U |0〉 are the so-called Kraus operators,
which satisfy

∑
ν KνK

†
ν = I, a property that guarantees

that Tr[ρS(t)] = 1 ∀t. Besides, the time evolution as
presented in equation (12) keeps the positive semidefi-
nite character of ρS(0), and, together with the preserva-
tion of the trace, ensures that ρS(t) is still a (physical)
density matrix [17].

The time evolution of ρS(0) from t = 0 to t > 0 can
also be performed by employing a super-operator V (t)

ρS(0)→ ρS(t) = V (t)ρS(0). (13)

If we consider both ρE and t as being fixed, equation
(13) represents the following map,

V (t) : S(HS)→ S(HS), (14)

which is called a dynamical map (see figure 5), where
S(HS) is the space of density matrices of the subsys-
tem S [13]. For every t ≥ 0 there corresponds a map
dynamical V (t), which together form a family of dy-
namical maps whose only parameter is t, and which
satisfies V (0) = I, where I is the identity operator.
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Figure 5. The conceptual idea behind a dynamical map is
illustrated in the form of a commutative diagram.

A complete positive and trace-preserving (CPTP) lin-
ear map in the form of equation (12) is called a quantum
channel. The word “channel” comes from communica-
tion theory. The analogy is based on the fact that one
party (Alice) transmits the state ρ through a commu-
nication path to another party (Bob), who receives the
(generally) modified state ρ′ [18]. Noise is introduced
into the system S as a result of its interaction with the
environment E. In other words, part of the information
contained in the state ρ is lost due to this interaction
[19].

When we are dealing with Markovian channels, for
which memory effects may be neglected, there exist cer-
tain super-operators L, which allow us to write V (t) in
an exponential form [13],

V (t) = exp{Lt}. (15)

Notice that by taking the derivative of ρS(t), and taking
equation (15) into account it yields,

dρs(t)

dt
=
d[V (t)ρs(0)]

dt

=
d[exp{Lt}]

dt
ρS(0)

= LV (t)ρS(0) = LρS(t).

(16)

Equation (16) is called Markov quantum master equa-
tion. The super-operator L is called the Liouvillian in
analogy to Liouville equation from classical mechanics.
Although equation (16) informs us that the markovian
evolution a density matrix is governed by a first order
differential equation, it does not guarantee that all pos-
sible solutions will be physical, i.e., positive semidefinite
operators [9]. In the case of markovian processes, Lind-
blad [21] showed that in order for the equation (16) to
give physical solutions, it must have the following form,

ρ̇S = −i[HS , ρS ] +
∑
j

[
2AjρSA

†
j −

{
A†jAj , ρS

}]
,

(17)
where Aj are the so-called Lindblad operators. In the
next subsections we will introduce the noisy channels
that we have studied.

A. Depolarizing Channel

The depolarizing channel is used to analyse experi-
mental setups where quantum systems may be lost or
when one has non-ideal detectors. For qudits (d-level
quantum systems), this channel can be described as
follows: ρ has a probability p of being replaced with
a completely mixed state, I/d, otherwise it remains un-
changed [19]. The corresponding map is,

ρS(t) =
pI

d
+ (1− p)ρS(0), (18)

where the probabilities are given, as a function time, by
p = 1− e−Γt, where Γ is the depolarizing decay param-
eter that depends on the system-environment coupling
strength.

One important aspect of the depolarizing channel is
its symmetry (see figure (6)). This property guaran-
tees, for example, that Bob has the same probability of
success either if he measures in the computational basis
or in the Fourier basis.

Figure 6. Representation on the Bloch Sphere of a depolar-
izing channel acting on a qubit. At t = t0 the states- which
are pure - lie on the surface of the sphere (represented by
the dotted lines). As time passes and the states become
mixed under the influence of noise, they now lie inside the
old Bloch sphere as if it had shrunk. At a long enough time
the state under the influence of this type of decoherence will
evolve to a completely mixed state represented by a single
point at the center of the old Bloch sphere [16].

B. Dephasing Channel

The dephasing channel is a kind of quantum chan-
nel in which the quantum information of the system is
lost but its energy eigenstates remain constant in time
(there is no thermalization) [18]. Dephasing is char-
acterized mathematically by the exponential decay of
the off-diagonal elements of the density matrix and the
preservation of its diagonal elements.
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The master equation for a system composed of a sin-
gle qudit with degenerate energy transition, e.g., trun-
caded harmonic oscillator, that undergoes dephasing
due to its interaction with a zero-temperature environ-
ment is given by [6, 9],

ρ̇S = Γ
[
2a†aρSa

†a−
{

(a†a)2, ρS
}]
, (19)

where Γ is the dephasing system-environment coupling
constant, and a and a† are the annihilation and cre-
ation operators, respectively. By solving (19) one finds
that the elements of the initial density matrix ρS(0) will
evolve as,

〈n|ρS(t)|m〉 = (1− p)(n−m)2 〈n|ρS(0)|m〉 , (20)

where (1− p) = e−Γt.
An interesting feature of this channel is the fact that

it deforms the Bloch sphere unevenly (see figure (7)),
but in a manner that its poles remain fixed, which
means that measurements in the computational basis
yield always the same probability while in the Fourier
basis the probability changes with time.

Figure 7. Representation on the Bloch sphere of a dephasing
channel acting on a qubit. The situation here is analogous
to the depolarizing map with the exception that dephasing
map "shrinks" the Bloch sphere unevenly. [16]

C. Amplitude Damping

Amplitude damping is the process by which a sys-
tem (atom, spin, harmonic oscillator, etc.) undergoes
a transition from a higher state of energy to a lower
state of energy by losing energy to the environment
[20]. It captures the dissipating nature of the system-
environment interaction, as it not only destroys coher-
ence but also causes the system to lose energy by driving
it towards the ground state [17, 18, 20]. Geometrically,

this map not only shrinks the Bloch sphere into an el-
lipsoid but also moves its center along the z axis (see
figure (8)) and is, because of this, a non-unital channel,
i.e., a channel that does not map the identity operator
to itself [16].

The scenario being considered for this work is the par-
ticular case of a system composed of a single qudit in-
teracting solely with a zero-temperature environment of
electromagnetic-field modes [20]. The evolution of such
a system is governed by the following master equation,

ρ̇S = Γ
[
2aρSa

† −
{
a†a, ρS

}]
, (21)

where Γ is the system-environment coupling constant,
and a and a† are the annihilation and creation opera-
tors, respectively.

Figure 8. Representation, on the Bloch sphere, of the
amplitude-damping channel acting on a qubit. This map
shrinks the Bloch sphere in the two directions of the equa-
torial plane, and also moves the center of resultant ellipsoid
towards the north pole, which represents the fundamental
state. [16].

IV. INFORMATION LOSS: A QUALITATIVE
APPROACH

In this section, we briefly introduce two important
concepts that will help us understand better why the
QRAC protocols behave the way they do in noisy chan-
nels: the von Neumann entropy and the input-output
fidelity.

A. Von Neumann Entropy

The Von Neumann entropy (SV N ) plays an essential
role in quantum information theory as Shannon entropy
does in classical information theory [16]. As an exten-
sion of Shannon entropy to the quantum theory, SV N is
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a quantifier of uncertainty related to a quantum state.
It is defined mathematically as:

SV N = −Tr[ρ log2 ρ] = −
∑
i

λi log2 λi, (22)

where λi are the eigenvalues of ρ. For pure states,
SV N = 0, and for a maximally mixed state, SV N =
log2 d, where d is the dimension of the qudit.

As qudits undergo decoherence through a noisy quan-
tum channel, the von Neumann entropy related to
its state changes, usually increases. This means that
less information can be obtained from a measurement,
which, in the context of this work, explains why QRAC
performance decreases when we are dealing with noisy
channels.

B. Fidelity

A sometimes very useful measure of distance between
quantum states is the fidelity. It can be thought as an
overlap or even an inner product of two states [19, 20].
Given two states ρ and σ, the fidelity is defined as

F = tr
√
ρ1/2σρ1/2. (23)

A particular type of fidelity is the input-output fidelity,
which measures the dissimilarity between the input and
output states of a quantum map [23]. Consider an ini-
tially pure state ρ(0) = |ψ〉〈ψ| as the input of a certain
channel, and the state ρ(t) as the output, where t > 0.
The input-output fidelity is given by,

FIO =
√
〈ψ|ρ(t)|ψ〉. (24)

Thus, in the context of this work, FIO describes the re-
lation (and contrast) between Alice’s pure input state
ρ(0) and the (generally) mixed output state ρ(t) re-
ceived by Bob.

V. QRAC WITH NOISE

In absence of noise, one can infer, based on equations
(2) and (6), that Bob’s probability of success is always
higher with QRAC than with CRAC, i.e., PQ > PC

for any dimension d.
However, when dealing with noisy channels, there

is not any guarantee that PQ will indefinitely remain
greater than PC as time passes. As a matter of fact, the
type of dynamics plays an important role. The combi-
nation of factors such as type of noise, coupling constant
and dimension of the system will determine whether or
not the ratio PQ/PC will remain greater than one and

for how long. Figure 9 shows a scheme illustrating how
we will consider the noise in the QRAC 2d → 1.

Figure 9. Schematics of a quantum RAC protocol through
a noisy channel.

Let us now consider the d2 possible states ρx0x1 =
|ψx0x1〉〈ψx0x1 | Alice may have at a time t = 0. At a
time t > 0, after going through a noisy channel, the
states will be mapped to,

ρ′x0x1
= ρx0x1

(t) =
∑
ν

Kν(t)ρx0x1
K†ν(t), (25)

where the Kraus operators Kν depend on the type of
channel. We can use the result of (25) to compute Bob’s
time-dependent probability of success

PQ(t) =
1

2d2

d−1∑
x0,x1=0

Tr{ρx0x1(t)[|x0〉〈x0|+ |ex1〉〈ex1 |]}.

(26)
We simulated the impact of depolarizing, amplitude
damping, and dephasing channels on Alice’s input
states and how these channels affected Bob’s probabil-
ity of success. First, we looked at how the exposure to
noise sources affects the ratio PQ/PC as a function of
time. The overall behaviour is illustrated on figure (10).
Contrary to the noiseless case, where QRAC is always
superior to CRAC at any instant of time and for any di-
mension, when one considers noise the scenario changes
rather drastically. Although the curves on the graphs
of figure (10) have different rates of decay, depending
on the kind of dynamic and the dimension, in all cases
the PQ/PC ratio will eventually drop below one, from
which point CRAC becomes superior to QRAC. An-
other interesting fact is that, for any of the three dy-
namics, as the dimension d increases, it takes increas-
ingly shorter amounts of time for the QRAC to become
less advantageous than CRAC. This can be seen, for
example, with the blue curves (d = 2), which start at
t = 0 at the smallest PQ/PC ratio when compared to
the other curves, but are able to sustain PQ/PC > 1
for the longest time.
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Figure 10. Each graph shows how the ratio between quan-
tum and classical average probabilities of success as function
of time for each of the three quantum channels.

The graphs on figure (11) show the behaviour of the
input-output fidelity (FIO) as a function of time. A
striking feature of the fidelity’s curves is how much they
resemble the PQ/PC ’s ones. This resemblance indicates
that the decay of FIO is related to the decay in PQ/PC .
One interpretation to this is the fact that as the state
ρ(t) received by Bob becomes more dissimilar to the
state ρ(0) prepared by Alice, becoming harder for Bob
to succeed, therefore PQ/PC also decreases.

Figure 11. Each graph shows how the input-output fidelity
chances as function of time for each of the three quantum
channels.

The dimension d also plays a significant role on Bob’s
chances of success. As a matter of fact, the higher d
gets the poorer Bob’s performance is. This effect can
be seen in figures (12), where we explored the influence
of increasing the dimension while keeping time fixed
(i.e., considering the same elapsed time). One striking
feature of noisy channel is the fact that, even for di-

mensions as low as d = 2, it is only a matter of time for
QRAC advantage over CRAC to completely vanish. On
the flip side, for any value of Γt > 0, no matter how low,
if you increase the dimension enough, it will eventually
lead to QRAC performing poorly. Further analysis of
these graphs indicates that high-dimensional versions
of QRAC are sensible to the dephasing and amplitude
damping channels the most, although, for the dephas-
ing channel, they are still able to keep higher values
of PQ/PC than for other dynamics. For the depolar-
izing channel, on the other hand, QRAC performance
seems to be more tolerant to high dimensions, at least
for values of Γt < 0.69.

Figure 12. This plot shows the ratio between quantum and
classical average probabilities of success as function of di-
mension d for all three channels in different time spans.

In the graphs in figure (13) we focused on the time
(life span), fidelity and entropy specifically when QRAC
becomes less advantageous than CRAC (PQ/PC = 1)
as functions of the dimension. In graph (a) we see
that the dimension has major impact on how fast PQ
becomes less than PC . In this regard, QRAC going
through dephasing is affected the most by an increase
in the dimension, which is reasonable considering that
for this channel the coherence decay is proportional to
e(n−m)2Γt, according to equation (20). Nevertheless, for
dimension d = 2 and d = 3, this channel is the best
among the three in terms of life span, and it only be-
comes the worst after d = 6. In the case of the am-
plitude damping channel, the effects of high dimensions
is considerable, although less pronounced than for de-
phasing. QRAC in the depolarizing channel presents, at
dimension d = 2, the shortest life span of the three, but
for d > 4 is able to perform better than in the other
channels. In the graph (c) we show the behaviour of
the entropy for when PQ/PC = 1. The entropy grows
more with the dimension for the depolarizing channel
than for the other dynamics and do not ceases to grow



8

(at least not for d ≤ 12). If we look back at the de-
polarizing curve in graph (a) of same figure, we see a
steady (almost linear) decrease in the time for which
PQ/PC = 1. For dephasing and amplitude damping
dynamics, we see a relatively high increase of entropy
with the dimension from d = 2 up to d = 6, when, fi-
nally, its growth starts to slow down. Again analysing
graph (a), we notice that the time for which PQ/PC = 1
decreases relatively fast from d = 2 to d = 6, and then
its decrease rate starts to diminish. In our interpreta-
tion, this indicates that the increase in entropy relates
(although not directly proportionally) to the decrease
of QRAC performance, resulting lower life span. The
reason for this, we argue, is the fact that the faster the
entropy (disorder) grows, the faster the amount of in-
formation that can obtained from state decline, which
in turn lowers Bob‘s probability of success because part
of the information Alice encoded in the state is lost.

Figure 13. The plot shows: (a) time when PQ becomes less
than PC , (b) Fidelity for PQ/PC = 1, (c) entropy, and (d)
the normalized entropy for PQ/PC = 1 as functions of the
dimension d.

VI. CONCLUSION

In this work we reviewed the concept of random ac-
cess code in both its classical and quantum versions.
Based on previous works, we presented a generalization
of QRAC and CRAC for d dimensions, which led us
to the conclusion that, in the absence of noise, QRAC
always outperforms CRAC regardless of the dimension.
We built upon this work by incorporating the theory
of open quantum systems to understand how a noisy
channel affects the performance of QRAC. We showed,
for all the three noisy channels, the decrease in QRAC
advantage over CRAC using fidelity and entropy. We
found that, for a given channel, the magnitude of the de-
crease in performance depends on both dimension and
elapsed time.

In future works, we intent to continue our investiga-
tion focusing mainly on the possibility of optimizing the
quantum RAC for each of the noisy channels studied in
the present work, determining whether or not the ef-
fects of quantum decoherence can be at least partially
mitigated. In order to perform this optimization, we
will apply semidefinite programming (SDP) to look for
better encoding and decoding strategies.
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