



## UNIVERSIDADE FEDERAL DO ABC Trabalho de Conclusão de Curso | Bacharelado em Química

Beatriz Araujo Lombardi

Tomada de decisões sustentáveis no contexto das reações de substituição eletrofílica aromática

> Santo André ABRIL - 2021

# Tomada de decisões sustentáveis no contexto das reações de substituição eletrofílica aromática

#### Beatriz Araujo Lombardi

#### Orientador: Prof. Dr. Marco A. B. Filho

Monografia final de conclusão de curso apresentada ao Bacharelado em Química da UFABC, como requisito parcial para obtenção do título de Bacharel em Química.

Área de Concentração: Química orgânica

#### UFABC Abril de 2021

Lombardi, Beatriz Araujo
Tomada de decisões sustentáveis no contexto das
reações de substituição eletrofílica aromática / Beatriz
Araujo Lombardi. - Santo André, 2021.
214 p.; 29,7 cm.

Orientador: Marco A. B. Filho. Monografia (Graduação) - Universidade Federal do ABC (UFACBC), Santo André, 2021.

Friedel-Crafts; Química e sociedade;
 Responsabilidade ambiental. I. Filho, Marco A. B..
 II. Universidade Federal do ABC (UFACBC). III. Título.

Dedico este trabalho a todos aqueles que de alguma forma estiveram e estão próximos de mim, fazendo esta vida valer cada vez mais a pena.

Agradeço à minha mãe Nilvia e meu pai Claudio por terem me apoiado e incentivado nesta longa jornada, estando sempre ao meu lado quando precisei.

Ao Prof. Dr. Marco Antonio Bueno Filho, do Centro de Ciências Naturais e Humanas (CCNH) da Universidade Federal do ABC (UFABC) pela oportunidade da realização deste projeto. Pela orientação e aprendizado, pela dedicação e disponibilidade, e pela compreensão e paciência.

À Universidade Federal do ABC (UFABC) pela autorização para execução deste projeto, e ao fornecimento de laboratório e equipamentos. Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela concessão de bolsa a este projeto

"Na vida, não existe nada a temer, mas a entender." (Marie Curie)

# RESUMO

LOMBARDI, B. A.. **Tomada de decisões sustentáveis no contexto das reações de substituição eletrofílica aromática**. 2021. 214 f. Monografia (Graduação) – Universidade Federal do ABC (UFACBC), Santo André.

A química muitas vezes é associada apenas a seus resultados obtidos e experimentos realizados dentro de um laboratório, mas seu papel é muito além disso, existe uma responsabilidade com a sociedade e o meio ambiente que deve ser prioridade. A química oferece diversos benefícios, mas também grandes desvantagens, por exemplo, o desenvolvimento de um novo pesticida realiza o controle das pragas, mas pode prejudicar a pessoa que o aplica e as plantas ao redor. Tomadas de decisões que impactam a sociedade e meio ambiente são realizadas com base em resultados químicos analíticos, como segurança de produtos, decisões médicas e análises forenses. Este projeto realizou experimentos de acilações de Friedel-Crafts, que são reações de substituição eletrofilica aromáticas e frequentemente estão envolvidas no processo de diversos compostos. Nessas reações é comum a geração de subprodutos e é necessário uso de ácidos de Lewis, assim, são reações de grande interesse, pois podem proporcionar uma rica discussão para conectar os fatores químicos com uma contextualização social, científica e ambiental. As reações de substituição eletrofílica aromática foram feitas com três substituintes, variando-se com seis ácidos de Lewis. Com os dados obtidos, uma revisão bibliográfica foi feita a fim de poder colocar em pauta não somente os resultados de laboratório referente a rendimento de reação e regiosseletividade, mas também abordar assunto de impactos sociais e ambientais.

Palavras-chave: Friedel-Crafts; Química e sociedade; Responsabilidade ambiental.

# ABSTRACT

LOMBARDI, B. A.. Tomada de decisões sustentáveis no contexto das reações de substituição eletrofílica aromática. 2021. 214 f. Monografia (Graduação) – Universidade Federal do ABC (UFACBC), Santo André.

Chemistry is often associated only with the results obtained and experiments carried out inside a laboratory, but its function is much more than that, there is a responsibility to society and the environment that must be a priority. Chemistry offers several benefits, but also major disadvantages, for example, the development of a new pesticide performs pest control, but can harm the person who applies it and the plants around it. Decision-making that impacts society and the environment is based on analytical chemical results, such as product safety, medical decisions and forensic analysis. This project performed Friedel-Crafts acylation experiments, which are electrophilic aromatic substitution reactions and are often involved in the process of several compounds. In these reactions, the generation of by-products is common and the use of Lewis acids is necessary, thus, they are reactions of great interest, as they can provide a rich discussion to connect chemical factors with a social, scientific and environmental context. The electrophilic aromatic substitution reactions were performed with three substituents by varying six Lewis acids. With the data obtained, a bibliographic review was made in order to be able to debate not only the laboratory results, such as reaction yield and regioselectivity, but also to address the issue of social and environmental impacts.

Key-words: Friedel-Crafts; Chemistry and society; Environmental responsibility.

| Figura 1 –  | Triângulo de Johnstone com os cantos que representam os aspectos formais                                          |    |
|-------------|-------------------------------------------------------------------------------------------------------------------|----|
|             | da química educação: o nível macro, o nível submicro, e o nível simbólico                                         | 29 |
| Figura 2 –  | Tetraedro de Mahaffy, que complementa Triângulo de Johnstone com topo,                                            |    |
|             | representando o elemento humano no ensino de química                                                              | 29 |
| Figura 3 –  | Esquema geral das reações; $X = ZnO$ , $Co(acac)_2$ , $AuCl_3$ ou $NbCl_5$ ; $R =$                                |    |
|             | anisol, N,N-dimetilanilina e isopropoxibenzeno                                                                    | 33 |
| Figura 4 –  | Mecanismo de reação ácido benzóico                                                                                | 37 |
| Figura 5 –  | Procedimento geral usando-se $ZnO$                                                                                | 37 |
| Figura 6 –  | Mecanismo de formação de amida e clorometano                                                                      | 38 |
| Figura 7 –  | Procedimento geral usando-se $Co(acac)_2$                                                                         | 39 |
| Figura 8 –  | Procedimento geral usando-se $Au_2Cl_6$                                                                           | 40 |
| Figura 9 –  | RMN $^{1}H$ do composto Isopropoxibenzeno em $CDCl_{3}$ / 60 MHz / Intervalo $\delta$                             |    |
|             | = 0 a 8 ppm                                                                                                       | 59 |
| Figura 10 – | Infravermelho do complexo $Co(Acac)_2$                                                                            | 60 |
| Figura 11 – | Infravermelho do complexo $Co(Acac)_2$ (literatura) Fonte: Spectral Database                                      |    |
|             | for Organic Compounds (SDBS, 1999)                                                                                | 60 |
| Figura 12 – | Raman do composto $Au_2Cl_6$                                                                                      | 61 |
| Figura 13 – | Raman do Au <sub>2</sub> Cl <sub>6</sub> (literatura) Fonte: NALBANDIAN, L.; PAPATHEODO-                          |    |
|             | ROU, G.N. Raman spectra and molecular vibrations of Au2Cl6 and AuAlCl6.                                           |    |
|             | Elsevier Science, Vibrational Spectroscopy, 1992.                                                                 | 61 |
| Figura 14 – | RMN <sup>1</sup> <i>H</i> da reação anisol com ZnO em <i>CDCl</i> <sub>3</sub> / 500 MHz Intervalo $\delta = 0$ a |    |
|             | 9 ppm                                                                                                             | 62 |
| Figura 15 – | RMN <sup>1</sup> <i>H</i> da reação anisol com ZnO em <i>CDCl</i> <sub>3</sub> / 500 MHz Intervalo $\delta$ = 5.3 |    |
|             | a 8.3 ppm                                                                                                         | 63 |
| Figura 16 – | RMN <sup>1</sup> <i>H</i> da reação anisol com ZnO em <i>CDCl</i> <sub>3</sub> / 500 MHz Intervalo $\delta$ = 7.8 |    |
|             | a 8.3 ppm                                                                                                         | 64 |
| Figura 17 – | RMN <sup>1</sup> <i>H</i> da reação anisol com ZnO em <i>CDCl</i> <sub>3</sub> / 500 MHz Intervalo $\delta$ = 7.2 |    |
|             | a 7.7 ppm                                                                                                         | 65 |
| Figura 18 – | RMN <sup>1</sup> <i>H</i> da reação anisol com ZnO em <i>CDCl</i> <sub>3</sub> / 500 MHz Intervalo $\delta = 6.8$ |    |
|             | a 7.1 ppm                                                                                                         | 66 |
| Figura 19 – | RMN <sup>1</sup> <i>H</i> da reação anisol com ZnO em <i>CDCl</i> <sub>3</sub> / 500 MHz Intervalo $\delta$ = 3.6 |    |
|             | a 4.1 ppm                                                                                                         | 67 |

| Figura 20 – RMN <sup>1</sup> <i>H</i> da reação anisol com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ / 60 MHz /                                                                           | 60 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Intervalo $\delta = 0$ a 9 ppm                                                                                                                                                    | 08 |
| Figura 21 – RMN <sup>1</sup> H da reação anisol com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ / 60 MHz /                                                                                  | () |
| Intervalo $\delta = 3.0 \text{ a } 4.5 \text{ ppm}$                                                                                                                               | 69 |
| Figura 22 – RMN <sup>1</sup> <i>H</i> da reação anisol com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ / 60 MHz /                                                                           |    |
| Intervalo $\delta = 4.5 \text{ a } 6.0 \text{ ppm}$                                                                                                                               | 70 |
| Figura 23 – RMN <sup>1</sup> <i>H</i> da reação anisol com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ / 60 MHz /                                                                           |    |
| Intervalo $\delta = 6.5 \text{ a } 8.5 \text{ ppm}$                                                                                                                               | 71 |
| Figura 24 – RMN <sup>1</sup> <i>H</i> da reação anisol com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60 MHz / Inter-                                                                      |    |
| valo $\delta = 0$ a 10 ppm                                                                                                                                                        | 72 |
| Figura 25 – RMN <sup>1</sup> <i>H</i> da reação anisol com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60 MHz / Inter-                                                                      |    |
| valo $\delta = 9$ a 10 ppm                                                                                                                                                        | 73 |
| Figura 26 – RMN <sup>1</sup> <i>H</i> da reação anisol com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60 MHz / Inter-                                                                      |    |
| valo $\delta = 6.5 \text{ a } 9.0 \text{ ppm}$                                                                                                                                    | 74 |
| Figura 27 – RMN <sup>1</sup> <i>H</i> da reação anisol com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60 MHz / Inter-                                                                      |    |
| valo $\delta = 3.5$ a 5.5 ppm                                                                                                                                                     | 75 |
| Figura 28 – RMN <sup>1</sup> H da reação anisol com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60 MHz / Inter-                                                                             |    |
| valo $\delta = 0.8$ a 2.4 ppm                                                                                                                                                     | 76 |
| Figura 29 – RMN <sup>1</sup> <i>H</i> da reacão anisol com <i>NbCl</i> <sub>5</sub> em <i>CDCl</i> <sub>3</sub> / <i>CH</i> <sub>2</sub> <i>Cl</i> <sub>2</sub> / 60 MHz / Inter- |    |
| valo $\delta = 0$ a 10 ppm                                                                                                                                                        | 77 |
| Figura 30 – RMN <sup>1</sup> <i>H</i> da reacão anisol com <i>NbCl</i> <sub>5</sub> em <i>CDCl</i> <sub>3</sub> / <i>CH</i> <sub>2</sub> <i>Cl</i> <sub>2</sub> / 60 MHz / Inter- |    |
| valo $\delta = 6.5 \text{ a } 8.5 \text{ ppm}$                                                                                                                                    | 78 |
| Figura 31 – RMN <sup>1</sup> H da reacão anisol com NbCl <sub>5</sub> em CDCl <sub>3</sub> /CH <sub>2</sub> Cl <sub>2</sub> / 60 MHz / Inter-                                     |    |
| valo $\delta = 4.5 \text{ a} 6.5 \text{ ppm} \dots \dots$                         | 79 |
| Figura 32 – RMN <sup>1</sup> H da reacão anisol com NbCl <sub>5</sub> em CDCl <sub>3</sub> /CH <sub>2</sub> Cl <sub>2</sub> / 60 MHz / Inter-                                     |    |
| valo $\delta = 3.5 \text{ a} 4.5 \text{ ppm} \dots \dots$                               | 80 |
| Figura 33 – RMN <sup>1</sup> H da reação anisol com $K_3[Cr(C_2O_4)_3]$ em $CDCl_3/CH_2Cl_2$ / 60 MHz                                                                             |    |
| / Intervalo $\delta = 0.0$ a 12.5 ppm                                                                                                                                             | 81 |
| Figura 34 – RMN <sup>1</sup> <i>H</i> da reação anisol com $K_3[Cr(C_2O_4)_3]$ em <i>CDCl</i> <sub>3</sub> / <i>CH</i> <sub>2</sub> <i>Cl</i> <sub>2</sub> / 60 MHz               |    |
| / Intervalo $\delta = 10.5$ a 13.0 ppm                                                                                                                                            | 82 |
| Figura 35 – RMN <sup>1</sup> <i>H</i> da reação anisol com $K_3[Cr(C_2O_4)_3]$ em <i>CDCl</i> <sub>3</sub> / <i>CH</i> <sub>2</sub> <i>Cl</i> <sub>2</sub> / 60 MHz               |    |
| / Intervalo $\delta = 5.0 \text{ a } 8.5 \text{ ppm}$                                                                                                                             | 83 |
| Figura 36 – RMN <sup>1</sup> H da reação anisol com $Hg[Co(SCN)_4]$ em $CDCl_2/CH_2Cl_2$ / 60 MHz                                                                                 |    |
| / Intervalo $\delta = 0$ a 12 ppm                                                                                                                                                 | 84 |
| Figura 37 – RMN <sup>1</sup> <i>H</i> da reação anisol com $H_{q}[C_{q}(SCN)_{4}]$ em $CDCl_{2}/CH_{2}Cl_{2}$ / 60 MHz                                                            |    |
| / Intervalo $\delta = 10 \text{ a } 12 \text{ ppm}$                                                                                                                               | 85 |
| Figura 38 – RMN <sup>1</sup> H da reação anisol com $Ha[Ca(SCN)_{4}]$ em $CDCl_{2}/CH_{2}Cl_{2}/60$ MHz                                                                           |    |
| / Intervalo $\delta = 5 \text{ a 9 ppm}$                                                                                                                                          | 86 |

| Figura 39 – RMN <sup>1</sup> <i>H</i> da reação anisol com $Hg[Co(SCN)_4]$ em $CDCl_3/CH_2Cl_2$ / 60 MHz                                                                                            |     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| / Intervalo $\delta = 1.5 \text{ a } 4.5 \text{ ppm}$                                                                                                                                               | 87  |
| Figura 40 – RMN <sup>1</sup> <i>H</i> da reação isopropoxibenzeno com $ZnO CDCl_3/CH_2Cl_2$ / 60 MHz /<br>Intervalo $\delta = 0$ a 9 ppm                                                            | 88  |
| Figura 41 – RMN <sup>1</sup> <i>H</i> da reação isopropoxibenzeno com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ /<br>60 MHz / Intervalo $\delta = 0$ a 10 ppm                                               | 89  |
| Figura 42 – RMN <sup>1</sup> <i>H</i> da reação isopropoxibenzeno com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ /<br>60 MHz / Intervalo $\delta = 6$ a 9 ppm                                                | 90  |
| Figura 43 – RMN <sup>1</sup> <i>H</i> da reação isopropoxibenzeno com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ /<br>60 MHz / Intervalo $\delta = 2$ a 5 ppm                                                | 91  |
| Figura 44 – RMN <sup>1</sup> <i>H</i> da reação isopropoxibenzeno com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ /<br>60 MHz / Intervalo $\delta = 0.8$ a 2.0 ppm                                            | 92  |
| Figura 45 – RMN <sup>1</sup> <i>H</i> da reação isopropoxibenzeno com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60<br>MHz / Intervalo $\delta = 0$ a 10 ppm                                                 | 93  |
| Figura 46 – RMN <sup>1</sup> <i>H</i> da reação isopropoxibenzeno com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60<br>MHz / Intervalo $\delta$ = 6.5 a 9.0 ppm                                              | 94  |
| Figura 47 – RMN <sup>1</sup> <i>H</i> da reação isopropoxibenzeno com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60<br>MHz / Intervalo $\delta$ = 3.5 a 6.0 ppm                                              | 95  |
| Figura 48 – RMN <sup>1</sup> <i>H</i> da reação isopropoxibenzeno com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60<br>MHz / Intervalo $\delta$ = -1.0 a 2.5 ppm                                             | 96  |
| Figura 49 – RMN <sup>1</sup> <i>H</i> da reação N,N-dimetilanilina com ZnO em <i>CDCl</i> <sub>3</sub> / <i>CH</i> <sub>2</sub> <i>Cl</i> <sub>2</sub> / 60<br>MHz / Intervalo $\delta = 0$ a 9 ppm | 97  |
| Figura 50 – RMN <sup>1</sup> <i>H</i> da reação N,N-dimetilanilina com ZnO em $CDCl_3/CH_2Cl_2$ / 60<br>MHz / Intervalo $\delta$ = 6.5 a 8.5 ppm                                                    | 98  |
| Figura 51 – RMN <sup>1</sup> <i>H</i> da reação N,N-dimetilanilina com ZnO em $CDCl_3/CH_2Cl_2$ / 60<br>MHz / Intervalo $\delta = 4$ a 6 ppm                                                        | 99  |
| Figura 52 – RMN <sup>1</sup> <i>H</i> da reação N,N-dimetilanilina com ZnO em $CDCl_3/CH_2Cl_2$ / 60<br>MHz / Intervalo $\delta = 0$ a 4 ppm                                                        | 100 |
| Figura 53 – RMN <sup>1</sup> <i>H</i> da reação N,N-dimetilanilina com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ /<br>60 MHz / Intervalo $\delta = 0$ a 10 ppm                                              | 101 |
| Figura 54 – RMN <sup>1</sup> <i>H</i> da reação N,N-dimetilanilina com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ /<br>60 MHz / Intervalo $\delta$ = 9.2 a 10.2 ppm                                          | 102 |
| Figura 55 – RMN <sup>1</sup> <i>H</i> da reação N,N-dimetilanilina com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ /<br>60 MHz / Intervalo $\delta = 6.5 a 9.0$ ppm                                           | 103 |
| Figura 56 – RMN <sup>1</sup> <i>H</i> da reação N,N-dimetilanilina com $Co(acac)_2$ em $CDCl_3/CH_2Cl_2$ /<br>60 MHz / Intervalo $\delta = 4.8 a 6.0 \text{ ppm}$                                   | 104 |
| Figura 57 – RMN <sup>1</sup> <i>H</i> da reação N.N-dimetilanilina com $Co(acac)_2$ em $CDCl_2/CH_2Cl_2$ /                                                                                          | 104 |
| $60 \text{ MHz} / \text{Intervalo } \delta = 1 \text{ a 4 ppm} \dots \dots$                   | 105 |

| Figura 58 – RMN <sup>1</sup> <i>H</i> da reação N,N-dimetilanilina com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60  |
|--------------------------------------------------------------------------------------------------------------|
| MHz / Intervalo $\delta = 0$ a 9 ppm                                                                         |
| Figura 59 – RMN <sup>1</sup> <i>H</i> da reação N,N-dimetilanilina com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60  |
| MHz / Intervalo $\delta$ = 7.0 a 8.5 ppm                                                                     |
| Figura 60 – RMN <sup>1</sup> <i>H</i> da reação N,N-dimetilanilina com $Au_2Cl_6$ em $CDCl_3/CH_2Cl_2$ / 60  |
| MHz / Intervalo $\delta = 2.8 \text{ a } 4.0 \text{ ppm}$                                                    |
| Figura 61 – Cromatograma da reação Anisol com ZnO                                                            |
| Figura 62 – Cromatograma da reação Anisol com <i>ZnO</i> (continuação)                                       |
| Figura 63 – Espectro de Massas; Reação Anisol com ZnO; T.R.=7.8; Ácido benzóico 111                          |
| Figura 64 – Espectro de Massas; Reação Anisol com ZnO; T.R.=7.8; Ácido benzóico                              |
| (continuação)                                                                                                |
| Figura 65 – Espectro de Massas; Reação Anisol com ZnO; T.R.= 15.4; o-metóxibenzofenona113                    |
| Figura 66 – Espectro de Massas; Reação Anisol com ZnO; T.R.= 15.4; o-metóxibenzofenona                       |
| (continuação)                                                                                                |
| Figura 67 – Espectro de Massas; Reação Anisol com ZnO; T.R.= 17.0; p-metóxibenzofenona115                    |
| Figura 68 – Espectro de Massas; Reação Anisol com ZnO; T.R.= 17.0; p-metóxibenzofenona                       |
| (continuação)                                                                                                |
| Figura 69 – Cromatograma da reação Anisol com $Co(acac)_2$                                                   |
| Figura 70 – Cromatograma da reação Anisol com $Co(acac)_2$ (continuação)                                     |
| Figura 71 – Espectro de Massas; Reação Anisol com Co(acac) <sub>2</sub> ; T.R.= 8.3; Ácido benzóico119       |
| Figura 72 – Espectro de Massas; Reação Anisol com Co(acac) <sub>2</sub> ; T.R.= 8.3; Ácido ben-              |
| zóico (continuação)                                                                                          |
| Figura 73 – Espectro de Massas; Reação Anisol com $Co(acac)_2$ ; T.R.= 16.4; o-metoxibenzofenona 121         |
| Figura 74 – Espectro de Massas; Reação Anisol com Co(acac) <sub>2</sub> ; T.R.= 16.4; o-metoxibenzofenona    |
| (continuação)                                                                                                |
| Figura 75 – Espectro de Massas; Reação Anisol com $Co(acac)_2$ ; T.R.= 18.0; p-metoxibenzofenona 123         |
| Figura 76 – Espectro de Massas; Reação Anisol com $Co(acac)_2$ ; T.R.= 18.0; p-metoxibenzofenona             |
| (continuação)                                                                                                |
| Figura 77 – Cromatograma da reação Anisol com $Au_2Cl_6$                                                     |
| Figura 78 – Cromatograma da reação Anisol comc $Au_2Cl_6$ (continuação)                                      |
| Figura 79 – Espectro de Massas; Reação Anisol com $Au_2Cl_6$ ; T.R.=7.5; Ácido benzóico 127                  |
| Figura 80 – Espectro de Massas; Reação Anisol com Au <sub>2</sub> Cl <sub>6</sub> ; T.R.=7.5; Ácido benzóico |
| (continuação)                                                                                                |
| Figura 81 – Espectro de Massas; Reação Anisol com $Au_2Cl_6$ ; T.R.= 15.4; o-metoxibenzofenona 129           |
| Figura 82 – Espectro de Massas; Reação Anisol com $Au_2Cl_6$ ; T.R.= 15.4; o-metoxibenzofenona               |
| (continuação)                                                                                                |
| Figura 83 – Espectro de Massas; Reação Anisol com $Au_2Cl_6$ ; T.R.= 16.9; p-metoxibenzofenona 131           |
| Figura 84 – Espectro de Massas; Reação Anisol com $Au_2Cl_6$ ; T.R.= 16.9; p-metoxibenzofenona               |
| (continuação)                                                                                                |

| Figura 85 – Cromatograma da reação Anisol com <i>NbCl</i> <sub>5</sub>                                          |  |
|-----------------------------------------------------------------------------------------------------------------|--|
| Figura 86 – Cromatograma da reação Anisol com NbCl <sub>5</sub> (continuação)                                   |  |
| Figura 87 – Espectro de Massas; Reação Anisol com NbCl <sub>5</sub> ; T.R.=7.7; Ácido benzóico . 135            |  |
| Figura 88 – Espectro de Massas; Reação Anisol com NbCl <sub>5</sub> ; T.R.=7.7; Ácido benzóico                  |  |
| (continuação)                                                                                                   |  |
| Figura 89 – Espectro de Massas; Reação Anisol com <i>NbCl</i> <sub>5</sub> ; T.R.= 15.4; o-metoxibenzofenona137 |  |
| Figura 90 – Espectro de Massas; Reação Anisol com NbCl <sub>5</sub> ; T.R.= 15.4; o-metoxibenzofenona           |  |
| (continuação)                                                                                                   |  |
| Figura 91 – Espectro de Massas; Reação Anisol com <i>NbCl</i> <sub>5</sub> ; T.R.= 17.1; p-metoxibenzofenona139 |  |
| Figura 92 – Espectro de Massas; Reação Anisol com NbCl <sub>5</sub> ; T.R.= 17.1; p-metoxibenzofenona           |  |
| (continuação)                                                                                                   |  |
| Figura 93 – Cromatograma da reação Anisol com $K_3[Cr(C_2O_4)_3]$                                               |  |
| Figura 94 – Espectro de Massas; Reação Anisol com $K_3[Cr(C_2O_4)_3]$ ; T.R.= 8.1; Ácido                        |  |
| benzóico                                                                                                        |  |
| Figura 95 – Espectro de Massas; Reação Anisol com $K_3[Cr(C_2O_4)_3]$ ; T.R.= 8.1; Ácido                        |  |
| benzóico (continuação)                                                                                          |  |
| Figura 96 – Espectro de Massas; Reação Anisol com $K_3[Cr(C_2O_4)_3]$ ; T.R.= 16.6; Desco-                      |  |
| nhecido                                                                                                         |  |
| Figura 97 – Espectro de Massas; Reação Anisol com $K_3[Cr(C_2O_4)_3]$ ; T.R.= 16.6; Desco-                      |  |
| nhecido (continuação)                                                                                           |  |
| Figura 98 – Cromatograma da reação Anisol com $Hg[Co(SCN)_4]$                                                   |  |
| Figura 99 – Cromatograma da reação Anisol com $Hg[Co(SCN)_4]$ (continuação) 147                                 |  |
| Figura 100–Espectro de Massas; Reação Anisol com $Hg[Co(SCN)_4]$ ; T.R.= 7.8; Ácido                             |  |
| benzóico                                                                                                        |  |
| Figura 101–Espectro de Massas; Reação Anisol com $Hg[Co(SCN)_4]$ ; T.R.= 7.8; Ácido                             |  |
| benzóico (continuação)                                                                                          |  |
| Figura 102–Espectro de Massas; Reação Anisol com $Hg[Co(SCN)_4]$ ; T.R.= 15.4; o-                               |  |
| metoxibenzofenona                                                                                               |  |
| Figura 103-Espectro de Massas; Reação Anisol com $Hg[Co(SCN)_4]$ ; T.R.= 15.4; o-                               |  |
| metoxibenzofenona (continuação)                                                                                 |  |
| Figura 104–Espectro de Massas; Reação Anisol com $Hg[Co(SCN)_4]$ ; T.R.= 16.9; p-                               |  |
| metoxibenzofenona                                                                                               |  |
| Figura 105-Espectro de Massas; Reação Anisol com $Hg[Co(SCN)_4]$ ; T.R.= 16.9; p-                               |  |
| metoxibenzofenona (continuação)                                                                                 |  |
| Figura 106–Cromatograma da reação Isopropoxibenzeno com $ZnO$                                                   |  |
| Figura 107–Cromatograma da reação Isopropoxibenzeno com $ZnO$ (continuação) 155                                 |  |
| Figura 108-Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 5.4; Isopro-                             |  |
| poxibenzeno                                                                                                     |  |

| Figura 109-Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 5.4; Isopro              | -       |
|-------------------------------------------------------------------------------------------------|---------|
| poxibenzeno(continuação)                                                                        | . 157   |
| Figura 110-Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.=7.5; Ácido                | )       |
| benzóico                                                                                        | . 158   |
| Figura 111-Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.=7.5; Ácido                | )       |
| benzóico (continuação)                                                                          | . 159   |
| Figura 112-Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 13.9; Ber                | nzil160 |
| Figura 113-Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 13.9; Benzi              | 1       |
| (continuação)                                                                                   | . 161   |
| Figura 114-Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 19.2; o                  | -       |
| isopropoxibenzofenona                                                                           | . 162   |
| Figura 115-Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 19.2; o                  | -       |
| isopropoxibenzofenona (continuação)                                                             | . 163   |
| Figura 116-Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 17.9; p                  | -       |
| isopropoxibenzofenona                                                                           | . 164   |
| Figura 117-Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 17.9; p                  | -       |
| isopropoxibenzofenona (continuação)                                                             | . 165   |
| Figura 118–Cromatograma da reação Isopropoxibenzeno com $Co(acac)_2$                            | . 166   |
| Figura 119–Cromatograma da reação Isopropoxibenzeno com $Co(acac)_2$ (continuação)              | 167     |
| Figura 120–Espectro de Massas; Reação Isopropoxibenzeno com $Co(acac)_2$ ; T.R.= 7.4            | ;       |
| Ácido benzóico                                                                                  | . 168   |
| Figura 121–Espectro de Massas; Reação Isopropoxibenzeno com $Co(acac)_2$ ; T.R.= 7.4            | ;       |
| Ácido benzóico (continuação)                                                                    | . 169   |
| Figura 122–Espectro de Massas; Reação Isopropoxibenzeno com $Co(acac)_2$ ; T.R.= 13.8           | ;       |
| Benzil                                                                                          | . 170   |
| Figura 123-Espectro de Massas; Reação Isopropoxibenzeno com Co(acac) <sub>2</sub> ; T.R.= 13.8  | ;       |
| Benzil (continuação)                                                                            | . 171   |
| Figura 124–Espectro de Massas; Reação Isopropoxibenzeno com $Co(acac)_2$ ; T.R.= 17.8           | ;       |
| p-isopropoxibenzofenona                                                                         | . 172   |
| Figura 125–Espectro de Massas; Reação Isopropoxibenzeno com $Co(acac)_2$ ; T.R.= 17.8           | ;       |
| p-isopropoxibenzofenona (continuação)                                                           | . 173   |
| Figura 126–Cromatograma da reação Isopropoxibenzeno com AuCl <sub>3</sub>                       | . 174   |
| Figura 127–Cromatograma da reação Isopropoxibenzeno com $AuCl_3$ (continuação)                  | . 175   |
| Figura 128-Espectro de Massas; Reação Isopropoxibenzeno com AuCl <sub>3</sub> ; T.R.= 5,4; Iso  | -       |
| propoxibenzeno                                                                                  | . 176   |
| Figura 129-Espectro de Massas; Reação Isopropoxibenzeno com AuCl <sub>3</sub> ; T.R.= 5,4; Iso  | -       |
| propoxibenzeno(continuação)                                                                     | . 177   |
| Figura 130-Espectro de Massas; Reação Isopropoxibenzeno com AuCl <sub>3</sub> ; T.R.=7.8; Ácido | )       |
| benzóico                                                                                        | . 178   |

| Figura 131-Espectro de Massas; Reação Isopropoxibenzeno com AuCl <sub>3</sub> ; T.R.=7.8; Ác        | ido       |
|-----------------------------------------------------------------------------------------------------|-----------|
| benzóico (continuação)                                                                              | 179       |
| Figura 132-Espectro de Massas; Reação Isopropoxibenzeno com AuCl <sub>3</sub> ; T.R.= 13.9; I       | Benzil180 |
| Figura 133-Espectro de Massas; Reação Isopropoxibenzeno com AuCl <sub>3</sub> ; T.R.= 1             | 3.9;      |
| Benzil (continuação)                                                                                | 181       |
| Figura 134-Espectro de Massas; Reação Isopropoxibenzeno com AuCl <sub>3</sub> ; T.R.= 1             | ).1;      |
| o-isopropoxibenzofenona                                                                             | 182       |
| Figura 135-Espectro de Massas; Reação Isopropoxibenzeno com AuCl <sub>3</sub> ; T.R.= 1             | ).1;      |
| o-isopropoxibenzofenona(continuação)                                                                | 183       |
| Figura 136-EEspectro de Massas; Reação Isopropoxibenzeno com AuCl <sub>3</sub> ; T.R.= 1            | 7.9;      |
| p-isopropoxibenzofenona                                                                             | 184       |
| Figura 137-Espectro de Massas; Reação Isopropoxibenzeno com AuCl <sub>3</sub> ; T.R.= 1             | 7.9;      |
| p-isopropoxibenzofenona (continuação)                                                               | 185       |
| Figura 138 – Cromatograma da reação N,N-dimetilanilina com ZnO                                      | 186       |
| Figura 139–Cromatograma da reação N,N-dimetilanilina com $ZnO$ (continuação).                       | 187       |
| Figura 140-Espectro de Massas; Reação N,N-dimetilanilina com ZnO; T.R.=7.6; Ác                      | ido       |
| benzóico                                                                                            | 188       |
| Figura 141-Espectro de Massas; Reação N,N-dimetilanilina com ZnO; T.R.=7.6; Ác                      | ido       |
| benzóico (continuação)                                                                              | 189       |
| Figura 142-Espectro de Massas; Reação N,N-dimetilanilina com ZnO; T.R.= 16.2                        | N-        |
| metil-fenil-benzamida                                                                               | 190       |
| Figura 143–Espectro de Massas; Reação N,N-dimetilanilina com ZnO; T.R.= 16.2                        | N-        |
| metil-fenil-benzamida (continuação)                                                                 | 191       |
| Figura 144–Cromatograma da reação N,N-dimetilanilina com $Co(acac)_2$                               | 192       |
| Figura 145-Espectro de Massas; Reação N,N-dimetilanilina com Co(acac) <sub>2</sub> ; T.R.=          | 7.5;      |
| Ácido benzóico                                                                                      | 193       |
| Figura 146-Espectro de Massas; Reação N,N-dimetilanilina com Co(acac) <sub>2</sub> ; T.R.=          | 7.5;      |
| Ácido benzóico (continuação)                                                                        | 194       |
| Figura 147–Espectro de Massas; Reação N,N-dimetilanilina com <i>Co(acac)</i> <sub>2</sub> ; T.R.= 1 | 5.3;      |
| N-metil-fenil-benzamida                                                                             | 195       |
| Figura 148–Espectro de Massas; Reação N,N-dimetilanilina com Co(acac) <sub>2</sub> ; T.R.= 1        | 5.3;      |
| N-metil-fenil-benzamida (continuação 1)                                                             | 196       |
| Figura 149-Espectro de Massas; Reação N,N-dimetilanilina com <i>Co(acac)</i> <sub>2</sub> ; T.R.= 1 | 5.3;      |
| N-metil-fenil-benzamida (continuação 2)                                                             | 197       |
| Figura 150–Cromatograma da reação N,N-dimetilanilina com <i>AuCl</i> <sub>3</sub>                   | 198       |
| Figura 151–Cromatograma da reação N,N-dimetilanilina com AuCl <sub>3</sub> (continuação             | 199       |
| Figura 152-Espectro de Massas; Reação N,N-dimetilanilina com AuCl <sub>3</sub> ; T.R.=7.9; Ác       | ido       |
| benzóico                                                                                            | 200       |

| Figura 153–Espectro de Massas; Reação N,N-dimetilanilina com AuCl <sub>3</sub> ; T.R.=7.9; Ácido |     |
|--------------------------------------------------------------------------------------------------|-----|
| benzóico (continuação)                                                                           | 201 |
| Figura 154–Espectro de Massas; Reação N,N-dimetilanilina com AuCl <sub>3</sub> ; T.R.= 6.3; N,N- |     |
| dimetilanilina                                                                                   | 202 |
| Figura 155–Espectro de Massas; Reação N,N-dimetilanilina com AuCl <sub>3</sub> ; T.R.= 6.3; N,N- |     |
| dimetilanilina (continuação)                                                                     | 203 |
| Figura 156–Espectro de Massas; Reação N,N-dimetilanilina com AuCl <sub>3</sub> ; T.R.= 15.3;     |     |
| N-metil-fenil-benzamida                                                                          | 204 |
| Figura 157–Espectro de Massas; Reação N,N-dimetilanilina com AuCl <sub>3</sub> ; T.R.= 15.3;     |     |
| N-metil-fenil-benzamida (continuação)                                                            | 205 |
| Figura 158-Espectro de Massas; Reação N,N-dimetilanilina com AuCl <sub>3</sub> ; T.R.= 16.6;     |     |
| Desconhecido                                                                                     | 206 |
| Figura 159–Espectro de Massas; Reação N,N-dimetilanilina com AuCl <sub>3</sub> ; T.R.= 16.6;     |     |
| Desconhecido (continuação)                                                                       | 207 |
| Figura 160–Fragmentação Ácido benzóico                                                           | 209 |
| Figura 161–Fragmentação p-metóxibenzofenona                                                      | 209 |
| Figura 162–Fragmentação o-metóxibenzofenona                                                      | 210 |
| Figura 163–Fragmentação Isopropoxibenzeno                                                        | 210 |
| Figura 164–Fragmentação Benzil                                                                   | 211 |
| Figura 165–Fragmentação o-isopropoxibenzofenona                                                  | 212 |
| Figura 166–Fragmentação p-isopropoxibenzofenona                                                  | 213 |
| Figura 167–Fragmentação N-metil-fenil-benzamida                                                  | 214 |

| Tabela 1 | - | Tempo de retenção (T.R. min) - Substituinte anisol                  | 42 |
|----------|---|---------------------------------------------------------------------|----|
| Tabela 2 | _ | Tempo de retenção (T.R. min) - Substituinte isopropoxibenzeno       | 42 |
| Tabela 3 | _ | Tempo de retenção (T.R. min) - Substituinte N,N-dimetilanilina      | 42 |
| Tabela 4 | _ | Rendimento Cromatográfico (R.C.%) - Substituinte Anisol             | 43 |
| Tabela 5 | _ | Rendimento Cromatográfico (R.C.%) - Substituinte isopropoxibenzeno  | 43 |
| Tabela 6 | _ | Rendimento Cromatográfico (R.C.%) - Substituinte N,N-dimetilanilina | 43 |
| Tabela 7 | _ | Comparação dos pontos positivos e negativos dos metais              | 52 |

\_\_\_\_\_

| 1      | INTRODUÇÃO                                 | 27 |
|--------|--------------------------------------------|----|
| 2      | OBJETIVOS                                  | 31 |
| 2.1    | Geral                                      | 31 |
| 2.2    | Específico                                 | 31 |
| 3      | METODOLOGIA                                | 33 |
| 3.1    | Metodologia                                | 33 |
| 4      | RESULTADOS E DISCUSSÃO                     | 35 |
| 4.1    | Síntese cloreto de benzoíla                | 35 |
| 4.2    | Síntese isopropoxibenzeno                  | 35 |
| 4.3    | Síntese do $Co(acac)_2$                    | 36 |
| 4.4    | Síntese $Au_2Cl_6$                         | 36 |
| 4.5    | Formação Ácido benzoico                    | 36 |
| 4.6    | Reacões com ZnO                            | 36 |
| 4.6.1  | Substituinte Anisol                        | 37 |
| 4.6.2  | Substituinte Isopropoxibenzeno             | 37 |
| 4.6.3  | Substituinte N,N-dimetilanilina            | 38 |
| 4.7    | <b>Reações com</b> $Co(acac)_2$            | 39 |
| 4.7.1  | Substituinte Anisol                        | 39 |
| 4.7.2  | Substituinte Isopropoxibenzeno             | 39 |
| 4.7.3  | Substituinte N,N-dimetilanilina            | 40 |
| 4.8    | Reações com AuCl <sub>3</sub>              | 40 |
| 4.8.1  | Substituinte Anisol                        | 40 |
| 4.8.2  | Substituinte Isopropoxibenzeno             | 40 |
| 4.8.3  | Substituinte N,N-dimetilanilina            | 41 |
| 4.9    | Extras                                     | 41 |
| 4.9.1  | Pentacloreto de nióbio                     | 41 |
| 4.9.2  | tris-(oxalato)cromato(III) de potássio     | 41 |
| 4.9.3  | tetratiocianocobalto(II) de mercúrio       | 42 |
| 4.10   | Dados compactos                            | 42 |
| 4.11   | Problemas sociais, ambientais e econômicos | 44 |
| 4.11.1 | Zinco                                      | 44 |

| 4.11.2  | <b>Cobalto</b>                                                                                                                        |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|
| 4.11.3  | <i>Ouro</i>                                                                                                                           |
| 4.11.4  | <i>Mercúrio</i>                                                                                                                       |
| 4.11.5  | Nióbio                                                                                                                                |
| 5       | <b>CONCLUSÃO</b> 51                                                                                                                   |
| 6       | <b>PERSPECTIVA</b>                                                                                                                    |
| REFERÊN | CIAS                                                                                                                                  |
| APÊNDIC | E A ESPECTROS DE RMN $^{1}H$ , RAMAN E IV                                                                                             |
| A.1     | Síntese Reagentes                                                                                                                     |
| A.1.1   | Isopropoxibenzeno                                                                                                                     |
| A.1.2   | $Co(acac)_2$                                                                                                                          |
| A.1.3   | $Au_2Cl_6$                                                                                                                            |
| A.2     | Reações de Friedel-Crafts                                                                                                             |
| A.2.1   | Anisol                                                                                                                                |
| A.2.1.1 | ZnO                                                                                                                                   |
| A.2.1.2 | $Co(acac)_2$                                                                                                                          |
| A.2.1.3 | $Au_2Cl_6$                                                                                                                            |
| A.2.1.4 | <i>NbCl</i> <sub>5</sub>                                                                                                              |
| A.2.1.5 | $K_3[Cr(C_2O_4)_3] \dots \dots$ |
| A.2.1.6 | $Hg[Co(SCN)_4] \dots \dots$     |
| A.2.2   | <i>Isopropoxibenzeno</i>                                                                                                              |
| A.2.2.1 | ZnO                                                                                                                                   |
| A.2.2.2 | $Co(acac)_2$                                                                                                                          |
| A.2.2.3 | $Au_2Cl_6$                                                                                                                            |
| A.2.3   | N,N-dimetilanilina                                                                                                                    |
| A.2.3.1 | ZnO                                                                                                                                   |
| A.2.3.2 | $Co(acac)_2$                                                                                                                          |
| A.2.3.3 | $Au_2Cl_6$                                                                                                                            |
|         |                                                                                                                                       |
| APENDIC | E B ESPECTROS DE GC-MS                                                                                                                |
| B.1     | Anisol                                                                                                                                |
| B.1.1   | ZnO                                                                                                                                   |
| B.1.2   | $Co(acac)_2$                                                                                                                          |
| B.1.3   | $AuCl_3 \ldots 125$                        |
| B.1.4   | <i>NbCl</i> <sub>5</sub>                                                                                                              |
| B.1.5   | $K_3[Cr(C_2O_4)_3]  \dots  \dots  141$                                                                                                |

| B.1.6   | $Hg[Co(SCN)_4]$                        |
|---------|----------------------------------------|
| B.2     | Isopropoxibenzeno                      |
| B.2.1   | <i>ZnO</i>                             |
| B.2.2   | <i>Co</i> ( <i>acac</i> ) <sub>2</sub> |
| B.2.3   | <i>AuCl</i> <sub>3</sub>               |
| B.3     | N,N-dimetilanilina                     |
| B.3.1   | ZnO                                    |
| B.3.2   | <i>Co</i> ( <i>acac</i> ) <sub>2</sub> |
| B.3.3   | <i>AuCl</i> <sub>3</sub>               |
| APÊNDIC | E C FRAGMENTAÇÕES 209                  |

# INTRODUÇÃO

A química frequentemente tem sua imagem limitada a laboratório, mas suas responsabilidades vão além das bancadas, deve-se incluir uma discussão ética na aplicação da ciência na sociedade. A química está presente nas atividades humanas há muito tempo, desde a pré-história com a descoberta e controle do fogo até os dias atuais com seu desenvolvimento tecnológico.

A química influenciava as relações entre os povos, uma vez que ao desenvolverem conhecimentos na área possuíam uma tecnologia capaz de ajudar ou prejudicar outros povos, seja na descoberta da preservação do couro animal para vestimenta ou o lançamento de uma flecha envenenada no inimigo. Assim, as relações comerciais eram afetadas pelas diferenças de tecnologias, de forma que os povos com maior conhecimento químico podiam se beneficiar (OLIVEIRA; MARTINS; APPELT, 2010).

As relações entre ciência, tecnologia e sociedade (CTS) começaram a ter maior reflexão com o agravamento dos problemas ambientais, sendo necessário discutir o conhecimento científico, seu papel na sociedade e seus impactos no meio ambiente. Assim, a ciência e tecnologia devem caminhar juntas com os aspectos históricos, éticos, políticos, ambientais e socioeconômicos. Deve-se compreender os processos químicos e debater suas aplicações tecnológicas, tomando decisões responsáveis com base nos efeitos sociais, melhoria da qualidade de vida e seus impactos ambientais (SANTOS *et al.*, 2009).

O surgimento da indústria química pesada, com a fabricação de ácido sulfúrico, soda e cloro, foi essencial para a Revolução Industrial, permitindo grandes avanços tecnológicos no início do séc. XIX. A descoberta do processo de obtenção do plástico não só influenciou o mundo, mas alterou o estilo de vida das sociedades, estando presente desde nossos eletrônicos até nos produtos de higiene e limpeza. Mas se de um lado essa descoberta facilitou nossas vidas, por outro gerou diversos problemas ambientais (OLIVEIRA; MARTINS; APPELT, 2010).

É evidente que a Química oferece uma grande variedade de benefícios à sociedade, mas a existência de suas desvantagens não pode ser ignorada. A necessidade de consumo atual é tão grande e "normal", que a importância e os impactos da química na sociedade muitas vezes ficam despercebidas. Os químicos precisam ter conhecimento de suas responsabilidades.

Uma indústria farmacêutica pode cobrar um alto valor em um novo medicamento por ser a única a possuir a patente, determinando quem terá acesso a um devido tratamento (OLIVEIRA; MARTINS; APPELT, 2010). O petróleo é uma fonte de energia altamente utilizada no mundo, mas sofre fortes oscilações no preço, podendo afetar a economia mundial e aumentar o custo de vida da população. Sua presença está na fabricação de plásticos, borrachas sintéticas, tintas, solventes, produtos cosméticos, entre outros bens de consumo. Sua alta demanda e impacto na economia já gerou diversas lutas (SOUZA, 2006).

Uma indústria química ao desenvolver um novo pesticida no mercado certamente colabora com o controle das pragas, mas se visar apenas o lucro e a função do produto em si, não se importando com fatores ambientais, seu produto pode prejudicar a pessoa que faz a aplicação, o solo e as plantas ao redor. Ou seja, um benefício gerado pela química, rapidamente pode-se tornar também um malefício (OLIVEIRA; MARTINS; APPELT, 2010).

A química analítica não pode deixar de ser citada, ela tem impactos diretos na sociedade, como o *doping* nos esportes, a entrega de resultados incorretos é acompanhada de efeitos na carreira do atleta. No setor agroalimentar, os resultados analíticos garantem a segurança de um produto, que devem estar livres de contaminante (VALCARCEL; CHRISTIAN; LUCENA, 2013).

Ou seja, a tomada de decisão a respeito da segurança de um produto é feita com base em resultados analíticos, assim, uma conclusão incorreta pode afetar negativamente a saúde do consumidor. Logo, diversas decisões que impactam a sociedade são feitas com base na química analítica, como segurança alimentar, decisões médicas, análises forenses, meio ambiente e regulamentos (VALCARCEL; CHRISTIAN; LUCENA, 2013).

A química orgânica moderna realiza pesquisas com foco em obter reações menos poluentes, mais eficientes e que sejam feitas em condições simples, com objetivo de evitar compostos secundários danosos tanto para a saúde quanto ao meio-ambiente, e também a diminuir os possíveis acidentes de laboratório.

Com esta abordagem, a química-verde deve ser mencionada, pois essa tem ganhado cada vez mais espaço por ter uma visão de harmonia do meio ambiente com a sociedade. Atualmente, muitos poluentes são gerados em diversos processos, como os industriais, e na maioria dos casos a diminuição dos impactos ao meio ambiente são problemas complexos que requerem pensamento crítico, resolução de problemas e tomada de decisões altamente responsáveis (ZOLLER, 2005).

Este projeto teve como estudo acilações de Friedel-Crafts, que são reação de substituição eletrofílica aromática usada para formar ligações carbono-carbono, reagindo compostos aromáticos com haletos de acila na presença de um ácido de Lewis (VOLLHARDT; SCHORE, 2013).

Contudo, estas características as tornam uma boa ferramenta de estudo, pois envolvem diversos fatores químicos, como regiosseletivadade, ácidos de Lewis, ressonância, efeito indutivo, grupos substituintes e propriedades físico-químicas (VOLLHARDT; SCHORE, 2013), além de ser comum a geração de subprodutos e rendimentos por vezes insatisfatórios. O estudo dessas reações é interessante, pois estão envolvidas no processo de diversos compostos devido à

introdução de vários grupos nos anéis aromáticos (SOLOMONS; FRYHLE, 2005).

Neste contexto, é importante abordar o ensino de química orientado para a "*Bildung*", termo alemão sem tradução, mas que está ligado ao desenvolvimento de uma consciência crítica e de formação de caráter, ou seja, ensino com base em discurso reflexivo e crítico. Desta forma, este tipo de ensino vai além dos conhecimentos do conteúdo de química, abordando também seu papel na sociedade, a fim de desenvolver cidadãos críticos e competentes (Sjöström, 2013).

O método de ensino tradicional da química pode ser representado pelo triângulo de Johnstone mostrado na figura 1, no qual o nível macro diz respeito a substâncias e propriedades, o submicro a átomos e moléculas, e o nível simbólico a símbolos e equações. Em 2004, Peter Mahaffy complementou o triângulo com "Elemento humano", que representa o contexto humano no ensino da química, adicionando perspectivas humanas, formando um tetraedro conforme a figura 2, que pode representar a forma de ensino "*Bildung*"(Sjöström, 2013).



Figura 1 – Triângulo de Johnstone com os cantos que representam os aspectos formais da química educação: o nível macro, o nível submicro, e o nível simbólico.



Figura 2 – Tetraedro de Mahaffy, que complementa Triângulo de Johnstone com topo, representando o elemento humano no ensino de química.

Com o objetivo de formar cidadãos responsáveis e críticos, a química deve abordar questões diárias da vida e da sociedade, incluindo as culturas humanas, ética e política. Deve-se também preocupar com avaliação de risco, aplicações industriais e seus impactos ecológicos e socioeconômicos. Logo, na formação de professores de química são necessários três tipos de conhecimento: (1) conhecimento em química "ontológico" (química real), (2) conhecimento "epistemológico" (filosófico e perspectivas sociológicas sobre a prática de química) e (3) conhecimento "ético" (reflexão do papel da química na sociedade) (Sjöström, 2013).

#### 2.1 Geral

O objeto de estudo deste projeto foi o estudo das reações de substituição eletrofílica aromática, preocupando-se em avaliar fatores além da química, como seu contexto social, político, econômico e ambiental. Assim, possibilitar discussões, nas quais as tomadas de decisões não tenham uma visão limitada a resultados de bancada.

### 2.2 Específico

Utilizar como substratos-modelo anisol, N,N-dimetilanilina e isopropoxibenzeno na presença de ácidos de Lewis que se prestem à discussões de natureza sócio-ambiental na medida que diferem entre si quanto a disponibilidade dos recursos naturais, custo e toxicidade. Avaliar com base em RMN  ${}^{1}H$  e GC-MS a composição do bruto da mistura reacional e inferir sobre a seletividade e identidade dos produtos obtidos.

Por fim, realizar uma revisão bibliográfica para adquirir conhecimentos da disponibilidade, origem e efeitos do uso dos insumos, tendo base para relacionar as tomadas de decisões não só pelos fatores químicos, mas também no âmbito social, econômico e político.

# **METODOLOGIA**

#### 3.1 Metodologia

Conforme a Figura 3, as reações estudadas foram acilação de Friedel-Crafts, usando-se ZnO,  $Co(acac)_2$ ,  $AuCl_3$  e  $NbCl_5$  como ácidos de Lewis (X), fixou-se três grupos substituintes (R) para cada série de estudo: anisol, N,N-dimetilanilina e isopropoxibenzeno.



Figura 3 – Esquema geral das reações; X = *ZnO*, *Co*(*acac*)<sub>2</sub>, *AuCl*<sub>3</sub> ou *NbCl*<sub>5</sub>; R = anisol, N,N-dimetilanilina e isopropoxibenzeno

Os procedimentos tiveram como base dados encontrados na literatura, de forma a investigar e discutir as reações antes de levá-las a bancada de laboratório, e assim, evitando desperdícios desnecessários, e economizando tempo. As reações foram acompanhadas com cromatografia de camada delgada (CCD/TLC) e caracterizadas, inicialmente com RMN  $^{1}H$ , mas foi necessário, principalmente, análise via GC-MS.
35

# **RESULTADOS E DISCUSSÃO**

### 4.1 Síntese cloreto de benzoíla

Misturou-se ácido benzóico (0, 1779mol) em tolueno (50mL), a pouca solubilidade demonstrada deve-se a presença de anel aromático em ambos compostos. Conforme se adicionou cloreto de tionila (0, 2134mol) com o auxílio do funil de adição, a solubilidade aumentou. A reação permaneceu em refluxo por cerca de 30 minutos até solubilidade total. O produto de interesse foi destilado à pressão reduzida  $(100mbar, 85 - 90^{\circ}C)$  (KUDELKO; WRóBLOWSKA, 2014).

Devido a liberação de  $HCl_{(g)}$  e  $SO_2(g)$ , montou-se uma armadilha para capturá-los, adicionando NaOH e fenolftaleína (controle de meio básico para neutralização dos gases ácidos liberados) em um frasco, o qual foi conectado a um frasco vazio, como garantia de que o frasco armadilha não expulsasse líquidos no balão de reação devido à pressão do sistema.

Massa de cloreto de benzoíla obtida: 19,74g, líquido incolor, (rendimento: 78%).

## 4.2 Síntese isopropoxibenzeno

Preparação do brometo de isopropila: Misturou-se álcool isopropílico (0, 85mol) com NaBr (0, 92mol), mantendo em agitação. Após esfriar, uma solução de  $H_2SO_4$  (38mL de ácido diluído em 38mL de água) foi adicionada lentamente. A mistura permaneceu em refluxo por uma hora em banho-maria com óleo, conforme esfriou, o sólido cristalizou-se, o qual se dissolveu novamente na destilação simples ( $T_e = 56^{\circ}$ C) (ISOPROPYL..., ).

Massa de brometo de isopropila obtida: 29, 15g, líquido incolor, (rendimento: 71%).

Para preparação do isopropoxibenzeno, adicionou-se sódio metálico (1, 86g) em excesso de etanol (50mL), a isto se acrescentou fenol (0, 081mol) e, por último, o brometo de isopropila já sintetizado (0, 081mol). Por fim, o conteúdo ficou em refluxo por 5 horas. O etanol foi destilado  $(78^{\circ}C)$ , e nesta etapa, formou-se uma pasta, sendo necessária uma extração com água e diclorometano, após secagem com sulfato de sódio e filtragem, a solução ficou límpida amarela, repetiu-se a destilação para retirar o diclorometano  $(38 - 42^{\circ}C)$ 

Por fim, uma destilação à pressão reduzida (220*mbar*, 114°C) foi realizada para obter o composto desejado e sua síntese foi confirmada com análise de RMN  ${}^{1}H$  (SMITH, 1934).

Massa obtida: 4,29g, líquido incolor, (rendimento: 38%).

# **4.3** Síntese do *Co*(*acac*)<sub>2</sub>

Dissolveu-se 1,6g de hidróxido de sódio (0,04mol) em 15mL de água, nesta mistura adicionou-se 4,5mL de acetilacetona (0,0044mol), mantendo a temperatura abaixo de 40°C com banho de gelo. Resultando numa mistura A com coloração amarela, porém o sólido não se dissolveu, acrescentando-se mais água até total dissolução.

Separadamente, 4,76g de  $CoCl_2$ . 6  $H_2O(0,02mol)$  foi adicionado em 25mL de água, gerando uma mistura B de coloração avermelhada. A mistura A foi adicionada em B, aos poucos, gerando um precipitado salmão. Realizou-se filtração à vácuo e o sólido obtido foi dissolvido em uma mistura de 39mL de álcool etílico com 26mL de clorofórmio, purificando com recristalização (GOFF *et al.*, 1982). A fim de confirmar a síntese do  $Co(acac)_2$ , realizou-se uma análise por meio de Infravermelho, comparando com dados da literatura concluiu-se que, de fato, o produto desejado foi produzido.

Massa obtida de  $Co(acac)_2$ : 5, 143g, pó rosa claro, (rendimento: 49%)

## 4.4 Síntese $Au_2Cl_6$

Adicionou-se 2, 1*g* de ouro em 12*mL* de água régia 3*ml* HCl : 1*ml* HNO<sub>3</sub>, reagiu-se numa temperatura próxima, mas não superior, a 120°C. Obtendo-se uma solução laranja intensa, após evaporação do resto de água régia, obteve o produto desejado (CHEN; PAPARIZOS; FACKLER, 1985).

A confirmação do produto desejado foi feito por Espectroscopia Raman, comparando com espectro obtido na literatura.

Massa obtida: 2,829g, sólido vermelho, (rendimento 88%)

# 4.5 Formação Ácido benzoico

A formação de ácido benzoico, como será vista adiante, foi extremamente comum, assim, é importante entendermos o motivo. O cloreto de benzoíla ao entrar em contato com a água do ar pode voltar ao composto de partida, ou seja, ácido benzoico, conforme mecanismo apresentado na Figura 4 (SARVARI; SHARGHI, 2004).

## 4.6 Reações com ZnO

A Figura 5 apresenta o método geral utilizado ao usar o ZnO como ácido de Lewis.



Figura 4 - Mecanismo de reação ácido benzóico



Figura 5 – Procedimento geral usando-se ZnO

Adição de cloreto de benzoíla (4,44*mmol*) ao grupo substituinte (4,44*mmol*), e por fim, o *ZnO* (2,22*mmol*), mantendo em agitação por cerca de 45 minutos. Usou-se diclorometano para finalizar as reações, que foram filtradas, extraídas com água e diclorometano, secadas com sulfato de sódio, filtradas novamente, evaporou-se o solvente e caracterizou-se com espectro de RMN  $^{1}H$  e CG-MS (SARVARI; SHARGHI, 2004).

#### 4.6.1 Substituinte Anisol

Com a adição do *ZnO*, a solução rapidamente ficou amarela e, em seguida, vermelha/alaranjada, liberando muito calor. Após análise dos espectros RMN <sup>1</sup>*H* em conjunto com CG-MS, concluiu-se de que a reação ocorreu e o produto desejado foi alcançado, majoritariamente o pmetóxibenzofenona (83,68%), mas obteve-se também o o-metóxibenzofenona (2,36%) e resíduo de ácido benzóico (13,97%).

#### 4.6.2 Substituinte Isopropoxibenzeno

Quando o ZnO foi adicionado ao meio reacional, a solução ficou amarela e, rapidamente, laranja, liberando muito calor. Após purificação, realizou-se uma análise espectro de RMN  $^{1}H$  e

CG-MS. podendo concluir que a reação ocorreu. Formou-se de forma majoritária o produto pisopropoxibenzofenona (67,60%), o-isopropoxibenzofenona (1,52%) e resíduo de ácido benzoico (2,62%). A fim de permitir a comparação entre as reações dos outros grupos substituintes, o resíduo de isopropoxibenzeno foi desconsiderado.

Aspecto: líquido amarelo.

#### 4.6.3 Substituinte N,N-dimetilanilina

Realizando-se o procedimento geral, a N,N – dimetilanilina é misturada, primeiramente, com o cloreto de benzoíla, assim o par de elétrons isolado do nitrogênio ataca a carbonila, formando um intermediário e expulsando  $Cl^-$ , o qual pode retirar uma das metilas ligadas ao nitrogênio, formando uma amida e clorometano, conforme a Figura 6.



Figura 6 - Mecanismo de formação de amida e clorometano

Há ainda a possibilidade de uma complexação do Zinco do catalisador com o oxigênio proveniente do cloreto de benzoíla no composto intermediário, dessa forma o íon acílio é gerado e o intermediário retorna a N, N –dimetilanilina, que irá atacar o íon acílio, formando o produto de interesse.

Assim, realizando-se um segundo método ao alterar a ordem de adição dos reagentes, colocando primeiro o grupo substituinte com o óxido de zinco, e por último o cloreto de benzoíla, evitando formação da amida, uma vez que o cloreto de benzoíla não interage com o substituinte diretamente, facilitando a formação do íon acílio e consequentemente do produto desejado.

A ordem dos reagentes interfere no mecanismo de reação para este grupo, mas não nos outros devido ao fato do nitrogênio ser um melhor doador de elétrons, pois é menos eletronegativo que o oxigênio dos outros substituintes. Realizou-se então a reação do segundo método, na qual a solução ficou amarela, seguida de verde e acabando em azul. Na extração, a fase aquosa ficou mais azul e a orgânica verde. Os espectros de RMN  $^{1}H$  e GC-MS indicaram que mesmo assim não foi formado o produto desejado, formou-se um produto desconhecido (83,73%), N-metil-fenil-benzamida (3,05%) e resíduo de ácido benzóico (8,48%)

Aspecto: Pasta azul.

# 4.7 Reações com *Co*(*acac*)<sub>2</sub>

A Figura 7 apresenta o método geral utilizado ao usar o  $Co(acac)_2$  como ácido de Lewis.



Figura 7 – Procedimento geral usando-se  $Co(acac)_2$ 

As reações de acilação de Friedel-Crafts, foram realizadas com um método geral, adicionou-se 4,44*mmol* do grupo substituinte em 2*mL* de uma mistura de nitrometano com acetonitrila, 7 : 2 respectivamente, a isto acrescentou-se 6,66*mmol* do cloreto de benzoíla, e por fim 2,5*mol*% do  $Co(acac)_2$ . As reações ficaram em refluxo por 6 – 7 horas (TAMILSELVAN *et al.*, 2008) e foram finalizadas com diclorometano, extraídas com este mesmo solvente e água, adição de agente secante (sulfato de sódio), filtragem e evaporação do solvente. Por fim, caracterizou-se com espectro de RMN <sup>1</sup>*H* e CG-MS.

#### 4.7.1 Substituinte Anisol

Na adição do complexo de cobalto, a mistura ficou azul, seguida de verde escuro e, ao fim, castanho escuro. Com os espectros de RMN  $^{1}H$  e GC-MS foi possível concluir de que houve a formação dos produtos p-metóxibenzofenona (58,70%) e o-metóxibenzofenona (9,01%) com resíduo de ácido benzóico (22,68%).

Aspecto: Cristal castanho.

#### 4.7.2 Substituinte Isopropoxibenzeno

A alteração da coloração no decorrer da reação foi semelhante ao substituinte anisol. Obeteve-se também os espectros de RMN  $^{1}H$  do bruto de reação, e GC-MS para análise. Concluiu-se de que formou apenas o produto p-isopropoxibenzofenona (65,93%) e resíduo de ácido benzóico (10,57%).

Aspecto: Pasta castanhos escuro.

#### 4.7.3 Substituinte N,N-dimetilanilina

Com a adição do complexo de cobalto, a mistura ficou verde, seguida de um azul escuro. Os espectros de RMN <sup>1</sup>*H* e GC-MS permitiram concluir de que houve formação de N-metil-fenil-benzamida (74,50%) e resíduo de ácido benzóico (19,00%). Vale ressaltar de que esta reação com  $Co(acac)_2$  foi realizada de acordo com o procedimento geral descrito, sem ter feito pelo outro método de adicionar o cloreto de benzoíla por último, motivo pelo qual a amida obtida nesta série foi superior à obtida com *ZnO*.

Aspecto: Pasta azul escuro.

## 4.8 Reações com *AuCl*<sub>3</sub>

A Figura 8 apresenta o método geral utilizado ao usar o Au<sub>2</sub>Cl<sub>6</sub> como ácido de Lewis.



Figura 8 – Procedimento geral usando-se Au<sub>2</sub>Cl<sub>6</sub>

As reações desta série foram realizadas de modo análogo às que tiveram o  $Co(acac)_2$  como ácido de Lewis.

#### 4.8.1 Substituinte Anisol

Com a adição do  $Au_2Cl_6$ , a solução adquiriu uma coloração castanha/alaranjada. Com os espectros de RMN <sup>1</sup>*H* e CG-MS, concluiu-se que formou-se p-metóxibenzofenona (76,54%), o-metóxibenzofenona (3,74%) e resíduo de ácido benzóico (7,83%).

Aspecto: Pasta castanho escuro.

#### 4.8.2 Substituinte Isopropoxibenzeno

A mistura ficou amarela com a adição de  $Au_2Cl_6$ , seguida de laranja, vermelho e, por fim, castanho avermelhado. O estudo dos espectros permitiu-se concluir de que houve formação de

p-isopropoxibenzofenona (57,2%), o-isopropoxibenzofenona (0,6%) e resíduo de ácido benzóico (14,4%)

Aspecto: Líquido laranja.

#### 4.8.3 Substituinte N,N-dimetilanilina

Após adição de  $Au_2Cl_6$ , a solução ficou verde, seguida de azul, roxo e, por fim, azul escuro. Com as análises dos espectros concluiu-se a formação de N-metil-fenil-benzamida (32,2%), resíduo de N,N-dimetilanilina (8,1%) e resíduo de ácido benzóico (50,8%)

Aspecto: Pasta azul esverdeada

## 4.9 Extras

Três reações "extras" foram realizadas com o grupo substituinte anisol, usando-se como ácido de Lewis, o pentacloreto de nióbio e dois complexos preparados por alunos na disciplina de "Química de Coordenação" da UFABC. Exceto o  $NbCl_5$ , o procedimento foi realizado conforme descrito as reações com  $Co(acac)_2$ .

#### 4.9.1 Pentacloreto de nióbio

Preparou-se uma solução de 2mmol de  $NbCl_5$  em 4mL de diclorometano, na qual foi adicionado 0, 5mmol de ácido benzoico. A esta mistura, acrescentou-se, lentamente, a solução de 1mol do substituinte em 1mL de diclorometano. Manteve-se agitação a temperatura ambiente por 80 minutos. Após adição de 15mL de água destilada, a agitação foi mantida por mais 30 minutos (BARBOSA; SILVA; CONSTANTINO, 2015).

Com a adição do anisol, a mistura ficou instantaneamente castanha escura. Mas após adição da água, a reação desta com o restante de *NbCl*<sub>5</sub> formou-se óxido de nióbio, substância sólida e branca. Desta forma, precisou-se adicionar excesso de diclorometano e transferir toda a mistura para um funil de separação. Após uma extração grosseira da fase aquosa e fase orgânica. Repetiu-se a extração algumas vezes com a fase aquosa. Após unir as fases orgânicas obtidas, realizou-se secagem com sulfato de sódio, filtragem e secagem do solvente.

As análises dos espectros permitiram a conclusão da formação de p-metóxibenzofenona (97,94%), o-metóxibenzofenona (0,8%) e resíduo de ácido benzóico (1,3%).

Aspecto: Óleo verde claro.

#### 4.9.2 tris-(oxalato)cromato(III) de potássio

O complexo quase não se dissolveu, com aquecimento a solubilidade aumentou um pouco, deixando a mistura esverdeada. O estudo dos aspectos inferiu a não ocorrência desta

reação, visto que não houve formação de produtos e observou-se apenas ácido benzóico (95,8%).

Aspecto: Cristais rosa

#### 4.9.3 tetratiocianocobalto(II) de mercúrio

O complexo tetratiocianocobalto(II) de mercúrio mostrou uma maior solubilidade em relação ao complexo de cromato. A mistura obteve uma cor castanha. A investigação dos espectros permitiu a dedução de formação de p-metóxibenzofenona (64,1%), o-metóxibenzofenona (1,4%) e resíduo de ácido benzóico (34,4%)

Aspecto: Cristal castanho.

# 4.10 Dados compactos

As tabelas 1, 2 e 3 mostram, respectivamente os tempos de retenção obtidos para os substituintes anisol, isopropoxibenzeno e N,N-dimetilanilina.

|                     | ZnO  | $Co(acac)_2$ | AuCl <sub>3</sub> | NbCl <sub>5</sub> | $Hg[Co(SCN)_4]$ | $K_3[Cr(C_2O_4)_3]$ |
|---------------------|------|--------------|-------------------|-------------------|-----------------|---------------------|
| Ácido Benzóico      | 7,8  | 8,3          | 7,5               | 7,7               | 7,8             | 8,1                 |
| o-metóxibenzofenona | 15,5 | 16,4         | -                 | 15,4              | 15,4            | -                   |
| p-metóxibenzofenona | 17,0 | 18,0         | 16,9              | 17,1              | 16,9            | -                   |

Tabela 1 - Tempo de retenção (T.R. min) - Substituinte anisol

Fonte: Dados da pesquisa.

Tabela 2 - Tempo de retenção (T.R. min) - Substituinte isopropoxibenzeno

|                         | ZnO  | $Co(acac)_2$ | AuCl <sub>3</sub> |
|-------------------------|------|--------------|-------------------|
| Isopropoxibenzeno       | 5,4  | -            | 5,4               |
| Ácido Benzóico          | 7,5  | 7,4          | 7,8               |
| o-isopropoxibenzofenona | 19,2 | -            | 19,1              |
| p-isopropoxibenzofenona | 17,9 | 17,8         | 17,9              |

Fonte: Dados da pesquisa.

Tabela 3 - Tempo de retenção (T.R. min) - Substituinte N,N-dimetilanilina

|                         | ZnO  | $Co(acac)_2$ | AuCl <sub>3</sub> |
|-------------------------|------|--------------|-------------------|
| N,N-dimetilanilina      | -    | -            | 6,3               |
| Ácido Benzóico          | 7,6  | 7,5          | 7,9               |
| N,metil-fenil-benzamida | 16,2 | 15,3         | 15,3              |

Fonte: Dados da pesquisa.

Os tempos de retenção ajuda a inferir que se trata do mesmo produto formado ao variar o ácido de Lewis, visto que ao tratar de um mesmo composto o tempo de retenção deve ser semelhante, porém é insuficiente para caracterização. Nas tabelas mostradas acima é possível notar que os valores são parecidos, mas não idênticos, uma possível causa disso é devido a variações das condições do equipamento, visto que as análises foram feitas em dias distintos.

Já o rendimento cromatográfico da reação oferece uma visão para discussão dos melhores ácidos de Lewis utilizados no que diz respeito aos resultados obtidos. Os quais são apresentados nas tabelas 4, 5 e 6, referentes respectivamente aos substituintes anisol, isopropoxibenzeno e N.N-dimetilanilina.

|                     | ZnO  | $Co(acac)_2$ | AuCl <sub>3</sub> | NbCl <sub>5</sub> | $Hg[Co(SCN)_4]$ | $K_3[Cr(C_2O_4)_3]$ |
|---------------------|------|--------------|-------------------|-------------------|-----------------|---------------------|
| Ácido Benzóico      | 7,8  | 22,7         | 7,8               | 1,3               | 34,4            | 95,8                |
| o-metóxibenzofenona | 2,4  | 9,0          | -                 | 0,8               | 1,4             | -                   |
| p-metóxibenzofenona | 83,7 | 58,7         | 76,6              | 97,9              | 64,1            | -                   |

|                   | ZnO  | $CO(ucuc)_2$ | AuCiz | NUCIS | $IIg[CO(SCN)_4]$ | $[K_3[CI(C_2O_4)_3]]$ |
|-------------------|------|--------------|-------|-------|------------------|-----------------------|
| Ácido Benzóico    | 7,8  | 22,7         | 7,8   | 1,3   | 34,4             | 95,8                  |
| netóxibenzofenona | 2,4  | 9,0          | -     | 0,8   | 1,4              | -                     |
| netóxibenzofenona | 83,7 | 58,7         | 76,6  | 97,9  | 64,1             | _                     |
|                   |      |              |       |       |                  |                       |

Fonte: Dados da pesquisa.

Tabela 5 - Rendimento Cromatográfico (R.C.%) - Substituinte isopropoxibenzeno

|                         | ZnO            | $Co(acac)_2$ | AuCl <sub>3</sub> |
|-------------------------|----------------|--------------|-------------------|
| Isopropoxibenzeno       | Desconsiderado | -            | Desconsiderado    |
| Ácido Benzóico          | 2,6            | 10,6         | 14,4              |
| o-isopropoxibenzofenona | 1,5            | -            | 0,6               |
| p-isopropoxibenzofenona | 67,6           | 65,9         | 57,2              |

Fonte: Dados da pesquisa.

Tabela 6 - Rendimento Cromatográfico (R.C.%) - Substituinte N,N-dimetilanilina

|                         | ZnO | $Co(acac)_2$ | AuCl <sub>3</sub> |  |
|-------------------------|-----|--------------|-------------------|--|
| N,N-dimetilanilina      | -   | -            | 8,1               |  |
| Ácido Benzóico          | 8,5 | 19,0         | 50,8              |  |
| N,metil-fenil-benzamida | 3,1 | 74,5         | 32,2              |  |
|                         |     |              |                   |  |

Fonte: Dados da pesquisa.

A discussão será baseada nos resultados obtidos para o substituinte anisol, visto que foi com este que se realizou maior número de reações variando-se o ácido de lewis. O  $Co(acac)_2$ em relação ao ZnO mostrou um menor rendimento e menor seletividade, uma vez que sobra quantidades maiores de resíduo de ácido benzóico e maior formação do produto orto. Já o AuCl<sub>3</sub> em comparação ao ZnO, ambos possuem mesma quantidade de resíduo de ácido benzóico, e apesar do metal ouro ter oferecido menor rendimento do produto para-substituído, não houve formação do orto-substituído, mostrando-se melhor para reações regiosseletivas.

Comparando o ácido de Lewis de ouro com o de nióbio, este manifestou um rendimento melhor que o ZnO e  $AuCl_3$  e extremamente seletivo, embora tenha formado os produtos para e orto, este pode ser desconsiderado tendo em vista que formou apenas 0,8% enquanto que aquele formou 97,9%. O complexo  $Hg[Co(SCN)_4]$  nitidamente foi aquele com pior rendimento, apesar de também ter se mostrado seletivo. Por fim, o complexo  $K_3[Cr(C_2O_4)_3]$  não gerou produtos, obtendo apenas ácido benzóico (95,8%).

Os cromatogramas com suas atribuições e justificativas por meio de mecanismo bem como os espectros de RMN  $^{1}H$  encontram-se nos anexos.

### 4.11 Problemas sociais, ambientais e econômicos

Além dos fatores de rendimento de reação e regiosseletividade dos ácidos de Lewis estudados, deve-se também avaliar a forma de obtenção desses metais, sua disponibilidade e impactos sociais e ambientais. Para isso, realizou-se uma revisão bibliográfica a fim de colocar diversos fatores em discussão. Este tópico irá discutir, separadamente, cada um dos metais utilizados, exceto aquele em que não houve formação de produto.

#### 4.11.1 Zinco

A China é a maior produtora de minério zinco, produzindo 31,45%, enquanto que o Brasil representa apenas 2,3% da produção mundial. As reservas brasileiras de zinco com importância econômica significativa localizam-se, principalmente, no Estado de Minas Gerais (88%), e o restante distribuído em Mato Grosso, Paraná e Pará (INFORMAÇÕES..., 2012).

A principal empresa responsável pelo investimento da exploração mineral de zinco na América Latina é a Votorantim Metais, sendo esta uma das maiores produtoras mundiais, possui unidades Três Marias e Juiz de Fora, no Estado de Minas Gerais (RUSSO, 2007).

O zinco é extraído, principalmente, de minerais e ocorre em abundância na crosta terrestre. Aproximadamente 30% da produção deste metal tem origem na reciclagem de sucatas (metal secundário), recuperando o zinco sem perda de propriedades físico-químicas (NEVES, ). O processo metalúrgico para obtenção do zinco demanda elevado uso de energia elétrica, pois é necessária uma recuperação final do metal por eletrólise (SANTOS, 2009).

Por possuir propriedade anticorrosiva e se combinar facilmente a outros metais, é utilizado na automobilística, construção civil e eletrodomésticos (NEVES, ). O óxido de zinco ZnO tem aplicações diversas ao seu uso como catalisador de processos químicos. Possui utilidades na fabricação de tintas, cosméticos, fármacos, protetores solares, maquiagens, aditivo alimentar, e devido a seu caráter de semicondutor, é usado também em equipamentos eletrônicos (MEDEIROS, 2012).

#### 4.11.2 Cobalto

O cobalto é encontrado, principalmente, nos minerais cobaltite (CoAsS), esmaltita ( $CoAs_2$ ) e liníta ( $Co_3S_4$ ). Este mineral é obtido, majoritariamente, como subproduto da produção

do cobre e níquel (SHRIVER; ATKINS, 2008).

Aproximadamente metade da produção mundial de Cobalto é realizada na República Democrática do Congo (RDC). Especialistas do setor se preocupam com isso, visto que é um mineral com demandas crescentes, cujo maior responsável por sua produção é a África, que vivencia instabilidade e diversos problemas sociais. No Brasil, o cobalto é obtido como subproduto do níquel e cobre nas jazidas em Goiás e Minas Gerais e é fornecido às indústrias químicas pela Votorantim (FONSECA, 2013).

O cobalto possui aplicações na produção de vidros e cerâmicas azuis, produção de ligas especiais e superligas, na indústria do petróleo como catalisador, em tratamento de câncer, na produção de baterias de veículos híbridos e, principalmente, na produção da maioria dos dispositivos móveis. Avalia-se que o cobalto possa ser, no futuro, uma alternativa econômica para substituir a platina no processo na produção de hidrogênio combustível a partir da água (BOA, 2018).

O mercado mundial de cobalto é abastecido pela indústria mineradora de Katanga, região localizada no sul da RDC, porém esta indústria é acompanhada de violações dos direitos humanos e negligência. A descarga inadequada de águas residuais contaminadas tornou a água da região imprópria para consumo das comunidades locais (SCHEELE; HAAN; KIEZEBRINK, 2016).

As atividades de mineração são localizadas próximas a cidade e aldeias, deixando a população exposta à fumaça, poeira, ruído e água contaminada. Essa condição pode desencadear uma série de problemas pulmonares, como asma, diminuição da função pulmonar e pneumonia. Pesquisas já mostraram que as pessoas presentes próximas às minas continham 43 vezes mais o nível de cobalto considerado normal (SCHEELE; HAAN; KIEZEBRINK, 2016).

Um estudo avaliou a contaminação de metais na urina da população em Katanga, encontrando níveis altos de metais tóxicos na urina, principalmente em crianças. O cobalto mostrou-se o metal de maior concentração na urina, ultrapassando os níveis máximos toleráveis (BANZA *et al.*, 2009).

O setor de mineração é a principal fonte de renda do estado do congo, contribuindo com mais de 11% do produto bruto interno (PIB) e sendo responsável em oferecer emprego ao menos para meio milhão de pessoas. No entanto, submete homens, mulheres e crianças a trabalharem em condições atrozes, com alta insegurança e com confrontos violentos da polícia, em troca de um baixo pagamento (SCHEELE; HAAN; KIEZEBRINK, 2016).

Além da violação do ponto de vista dos direitos humanos, há danos grandes do ponto de vista ambiental como a perda da biodiversidade, desmatamento, poluição do ar e contaminação da água com compostos tóxicos e radioativos (SCHEELE; HAAN; KIEZEBRINK, 2016).

O trabalho infantil nessas atividades minerárias é comum, devido, principalmente, ao fato das crianças conseguirem melhor acesso às minas pelos corredores estreitos devido a seus tamanhos (SCHEELE; HAAN; KIEZEBRINK, 2016).

A extração de mineral tem um enorme custo humano na África, sua história de exploração colonial bruta se repete nos dias atuais, condição mostrada por uma reportagem realizada pela *SkyNews* a respeito da exploração de minerais. A reportagem acompanha um grupo de trabalhadores, no qual o mais novo tinha apenas 4 anos, as crianças trabalham como escravos modernos, e apesar do trabalho árduo, a comida não é garantida. Elas trabalham sem sapatos, luvas ou máscaras nas condições mais precárias para fornecerem milhões para empresas multinacionais, principalmente as da china, enquanto sofrem em miséria (SKY NEWS, ).

#### 4.11.3 Ouro

O ouro é obtido em rochas antigas de depósitos, em geral, originados de eventos vulcânicos e alterações dessas rochas. As reservas mundiais de ouro ultrapassam 90.000 toneladas, porém aquelas com alto teor representam menos de 20% das reservas lavráveis de ouro. Os produtos de ouro com altos valores são as joias e adornos, mas possui usos também na indústria eletrônica (NETO, 2009). As reservas economicamente aproveitáveis no Brasil estão concentradas nos Estados de Minas Gerais (45,6%), Goiás (12,3%), Mato Grosso (11%), Pará (11%), Amapá (7,6%), Bahia (7,4%) e Maranhão (3,6%) (LOBATO *et al.*, 2016).

Um marco na história do ouro no Brasil foi o garimpo de Serra Pelada, localizada no sudeste do Pará. A descoberta de ouro na região atraiu muitas pessoas em busca de fortuna no pará. O local pertencia a companhia Vale do Rio doce e, em 1992, o garimpo foi fechado, de forma que os garimpeiros que se mantiveram enfrentaram diversas dificuldades (ANGOTTI *et al.*, 2016).

Somente em 2007, que se formalizou um acordo para regularização do garimpo na região, de forma que o minério extraído seria de direito dos garimpeiros, mas o calcário seria repassado à Vale do Rio Doce (ANGOTTI *et al.*, 2016).

O principal efeito do garimpo é a poluição com mercúrio no solo, sedimentos, águas e rios. Os impactos na fauna e flora implicam na propagação de doenças, como a malária. Além de que, não havia nenhum cuidado com os garimpeiros, os trabalhadores que migraram em busca de um sonho, submetiam-se a condições precárias de vida com condições de trabalho insalubres (ANGOTTI *et al.*, 2016).

Por trás da obtenção do ouro, há um grande impacto social uma vez que o garimpo é uma das principais atividades do setor, porém acompanhadas de uma grave situação do ponto de vista trabalhista, de saúde e segurança, por possuir alto índice de informalidade. As consequências do garimpo atingiam as vidas pessoais da comunidade local, já que era comum assassinatos devido brigas e "acertos de contas", proliferação de doenças sexualmente transmissíveis e abuso de álcool e drogas (ANGOTTI *et al.*, 2016).

#### 4.11.4 Mercúrio

O mercúrio é encontrado no meio ambiente associado a outros elementos, principalmente ao enxofre no minério de cor vermelha ou preta cinabre (HgS), com as maiores reservas localizadas na Espanha e na Itália. O minério é aquecido e condensado para obtenção do mercúrio metálico. Outro meio de obtenção desse metal são erupções vulcânicas, evaporação natural e minas de mercúrio (MICARONI; BUENO; JARDIM, 2000).

As aplicações do mercúrio são diversas: Na forma metálica é usado em termômetros, barômetros e manômetro; Na forma de compostos orgânicos é aplicado em inseticidas, bactericidas e fungicidas; E na forma de compostos inorgânicos tem finalidade em catálise na indústria de polímeros sintéticos (MICARONI; BUENO; JARDIM, 2000).

Ao tratar de um metal pesado como o mercúrio, deve-se uma maior atenção em relação aos seus resíduos, uma vez que descarte inapropriado implica em efeitos ecotoxicológicos e doenças. No Brasil, a gestão de resíduos tecnológicos, os quais possuem diversos metais pesados, é insuficiente e há poucos sistemas de coleta ou tratamento de tais resíduos, acarretando em danos à saúde e ao meio ambiente (CESAR, 2011).

O mercúrio é um dos metais mais perigosos devido a sua alta ecotoxicidade e quando liberado ao meio ambiente, a cadeia alimentar é afetada por ele podendo atingir o homem através da alimentação provocando riscos de saúde (CESAR, 2011).

No amapá, há muita liberação de metais pesados, em especial o mercúrio proveniente dos rejeitos da exploração de ouro na região de garimpo em Lourenço, provocando impactos ambientais. Encontrou-se a região níveis de mercúrio acima da concentração máxima permitida em várias espécies de peixes e na água. Verificou-se que a ingestão de metais pesados acima do permitido pode acarretar em atividade carcinogênica, e, no caso do mercúrio, os principais efeitos nocivos são lesões no sistema neurológico, imunológico, deformações no corpo e má formação do feto (LIMA, 2013).

O mercúrio é responsável pela captura e retenção de ouro, pois forma-se amálgama (liga metálica originada pela reação do mercúrio com outro metal). Desta forma, é o metal pesado mais liberado nas atividades de garimpo. Apresentou-se que 20% do mercúrio utilizado é perdido para a atmosfera na queima da amálgama e 10% é descarregado nas águas. Além de que, para obtenção de 1*Kg* de ouro, usa-se cerca de 1,5*Kg* de mercúrio (LIMA, 2013).

Durante amálgama, perde-se mercúrio metálico nos rios e solos devido às condições precárias de manuseio e a vaporação. Após esta etapa, o produto Au - Hg é queimado, em geral, ao ar livre, liberando mercúrio para a atmosfera, local em que é oxidado para mercúrio  $Hg^{2+}$ , então se condensa nas nuvens e volta ao solo e água através da chuva, alterando-se para uma constituição tóxica: mercúrio orgânico, o qual é absorvido pelos seres vivos e transformado para sua forma mais tóxica, o metilmercúrio ( $[CH_3Hg]^+$ ) (LIMA, 2013).

O metal encontra-se na forma mais tóxico quando está na forma de cátion ou associado a

cadeias carbônicas. Apresenta altos riscos aos organismos quando cátion, pois possui afinidade pelo enxofre, reagindo com radical sulfidrila existente nas estruturas proteicas de enzimas, e portanto, causando danos ao metabolismo dos seres vivos. É o caso do mercúrio, quando na forma metilmercúrio atravessa as brânquias dos peixes e no interior do organismo interage com os grupos sulfidrila das enzimas, motivo pelo qual é tóxico (LIMA; MERCON, 2011).

#### 4.11.5 Nióbio

O nióbio é um metal refratário de cor prateada-clara, dúctil, com elevado ponto de fusão resistente à corrosão, pois forma-se uma película superficial de óxido, apresenta diversos pontos de oxidação e, a temperatura ambiente, não reage com hidrogênio, ar, água e a maioria dos ácidos (SOUSA; FERNANDES; GUERRA, 2013).

O nióbio é aplicado em vários ramos, sendo o principal na obtenção de ligas, possui usos na indústria automobilística, naval e aeroespacial, construção civil e na obtenção de ligas supercondutoras, as quais são aplicadas em aparelhos de ressonância magnética nuclear (RMN), instrumento importante para a química e medicina. O composto pentóxido de niobio ( $Nb_2O_5$ ) tem uso, por exemplo, em cerâmicas eletrônicas, lentes ópticas e filtros para receptores de TV (SOUSA; FERNANDES; GUERRA, 2013).

As maiores reservas de nióbio estão localizadas no Brasil, sendo as mais relevantes no Estado de Minas Gerais (Araxá e Tapira), Estado de Goiás (Catalão e Ouvidor) e no Estado do Amazonas (São Gabriel da Cachoeira). O nióbio é encontrado em reservas significativas de minério pirocloro, atendendo necessidades atuais e futuras do uso de nióbio, mas este também é encontrado em minerais columbita e tantalita na Rondônia (Presidente Figueiredo) (LIMA., 2010).

Cerca de 98% das reservas de pirocloro estão no Brasil, oferecendo ao país uma posição privilegiada neste ramo, motivo pelo qual o maior produtor de nióbio é o Brasil, ofertando a liga ferro-nióbio, metal e outros compostos. O principal produtor, no Brasil, de nióbio é a Companhia Brasileira de Metalurgia e Mineração (CBMM), que junto em menor participação das empresas Anglo American e a Mineração Taboca , representam 98% da produção mundial (LIMA., 2010).

A versatilidade, vantagens econômicas e disponibilidade do nióbio contribuem para seu uso com um aumento acelerado. Por isso, as empresas brasileiras investem na pesquisa e desenvolvimento de produtos que utilizam nióbio, estimulando e diversificando o uso deste metal na siderurgia e metalurgia. Esta especial posição do Brasil ressalta a relevância de adoção de políticas que incentivem o uso do nióbio para um aumento da concorrência com o comércio exterior (LIMA., 2010).

A reserva de Morro dos Seis Lagos em São Gabriel da Cachoeira no Estado do Amazonas é considerada a maior do mundo, porém o nióbio, neste local, encontra-se na forma de mais de oito diferentes niobatos ( $NbO^{3-}$ ) complexos , não havendo ainda tecnologia conhecida

para aproveitamento do nióbio nestes minerais, sendo de alto interesse a pesquisa do mesmo (SANTOS; NAVA; FERREIRA, 2009).

O problema da exploração de nióbio no Amazonas, especificamente em São Gabriel da Cachoeira, deve-se ao fato de ser a região com a maior porcentagem (76,6%) de povos autodeclarados indígenas (IBGE, 2019). O que torna a exploração das riquezas naturais um assunto delicado por estarem presentes em terras indígenas, que devem ser discutida de forma cuidadosa, visto que trata-se de uma população que, historicamente, vive situações de pobreza e conflitos (SANTOS; NAVA; FERREIRA, 2009).

O estado do Amazonas é considerado um dos mais importantes do mundo devido sua vasta geodiversidade e importância ambiental, e possui uma diversidade de minerais metálicos (como ouro e nióbio) e não metálicos, além de fontes de petróleo e gás natural (SANTOS; NAVA; FERREIRA, 2009).

A mineração em terras indígenas é proibida no Brasil, mas há um projeto de Lei (PL 1610/96) que está em processo há 20 anos e tem como objetivo regularizar a exploração minerária em terras indígenas, e ainda tirar o direito dos indígenas de tomar decisão final a respeito da entrada de empresas mineradoras em suas terras. A aprovação desta lei impediria os índios de manterem sua autonomia e identidade a respeito da extração mineral em suas terras, eles devem ser consultados e terem a palavra final para qualquer aprovação (RADLER, 2017).

Embora a exploração minerária não seja permitida, as terras indígenas sofrem assédio pelos empreendimentos de extração minerária e as invasões de garimpeiros (RADLER, 2017). A atividade minerária trás impactos graves socioambientais e é uma constante ameaça, pois sua aprovação implicaria em impactos diretos em terras e povos indígenas (POR..., 2016).

A agência nacional de mineração (ANM) indeferiu mais de 50 processos interrompidos que requereu pesquisa e exploração mineral em terras indígenas, sendo são gabriel da cachoeira uma delas. Alguns dos requerentes foram a Vale e Mineração Taboca (LIMINAR..., 2019).

Logo, a exploração da reserva de Morro dos Seis Lagos em São Gabriel da Cachoeira não deve ser realizada a curto e médio prazo, pois tem como impedimento o fato de se situar em um território indígena e não possuir uma infraestrutura (JUNIOR; CAMPOS, 2016).

A questão da exploração de minerais na Amazônia não se restringe apenas às terras indígena. A Amazônica tem sofrido diversas ações humanas que afetam sua conservação, como por exemplo as queimadas e o garimpo. A floresta amazônica representa um terço das florestas tropicais do mundo e possui mais da metade da biodiversidade do planeta, atribuindo-lhe papéis fundamentais na manutenção ecológica (A..., 2016).

A vegetação alta e densa desta floresta impede que o fogo escape de campos agrícolas e pastagens, protegendo contra incêndios. É nesta floresta também que se encontra 20% da água doce do mundo. Sua biodiversidade é um tesouro para a humanidade devido seu alto potencial de desenvolvimento biotecnológico. A amazônia legal abriga 69% das terras indígenas do Brasil

e 55% das populações indígenas, que necessitam da floresta para manterem seu modo de vida e cultura (A..., 2016).

A floresta Amazônica possui um papel de escala mundial devido ao desempenho das árvores, que reduzem os níveis de poluição, as plantas conseguem retirar o gás carbônico da atmosfera e liberam oxigênio através do processo de fotossíntese. Porém, o carbono é armazenado para crescimento das plantas, e a queima da floresta libera novamente o gás carbônico para a atmosfera, logo, as queimadas intensificam o efeito estufa, e consequentemente, as alterações climáticas (GAMBARINI, 2019).

As queimadas é um processo final do desmatamento para converter uma área florestal em pasto para a atividade pecuária. O imenso aumento das queimadas, em 2019, devem ter como causa o alto desmatamento, pois não houve outro fenômeno que explique tal ocorrido, uma vez que não teve uma seca extrema ou eventos climáticos que intensificam as secas, como o El Ninõ (MADEIRO, 2019).

As queimadas da Amazônia alertaram diretamente a população do estado de São Paulo, no dia 19 de agosto de 2019, ao faltar luz durante o dia, pois às 15h da tarde o dia virou noite (VITORIO, 2019). Este fenômeno observado ocorreu devido ao encontro da fumaça dos incêndios com nuvens de uma frente fria (OLIVEIRA, 2019).

Desta forma, a exploração de nióbio no estado do Amazonas deve ser impedida para conservação da floresta de importância mundial. A exploração deste minério agravaria mais ainda a situação da Amazônia, comprometendo seu papel de biodiversidade, manutenção do ecossistema e disponibilidade para terras indígenas.

A tabela 7 mostra, resumidamente, os pontos positivos e negativos principais de cada metal.

A partir dos dados experimentais obtidos e da revisão bibliográfica, é notável que a decisão de qual o melhor ácido de Lewis a ser utilizado não pode ser restrito a fatores químicos, uma vez, que ao olhar apenas rendimento e seletividade, o uso do Nióbio é extremamente tentador, mas devido a seus impactos sociais e ambientais, sua escolha já não é mais tão atrativa.

Assim, o olhar de um químico deve ser ampliado e ir além dos resultados obtidos em bancada, deve-se sempre pensar não só nas consequências que haverá no meio ambiente e na sociedade, como no caso do nióbio, mas também em como seu uso pode estar alimentando condições de trabalho precário, como a extração de cobalto.

| Metal              | Pontos Positivos                                                                                                                                                                                 | Pontos Negativos                                                                                                                               |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Zinco              | <ul><li>Bom rendimento</li><li>Baixa toxicidade</li></ul>                                                                                                                                        | <ul> <li>Quantidade usada não ca-<br/>talítica</li> <li>Poucas jazidas no Brasil</li> </ul>                                                    |
| Cobalto            | <ul> <li>Baixa toxicidade</li> <li>Quantidade usada catalí-<br/>tica</li> </ul>                                                                                                                  | <ul> <li>Jazidas localizadas<br/>na África (Condições<br/>de trabalho precária e<br/>Exploração infantil)</li> </ul>                           |
| Ouro               | <ul> <li>Bom rendimento</li> <li>Seletivo</li> <li>Há jazidas no Brasil</li> </ul>                                                                                                               | <ul> <li>Garimpo (uso de mercúrio)</li> <li>Invasão em terras indígenas</li> <li>Alto custo</li> </ul>                                         |
| Mercúrio<br>Nióbio | <ul> <li>Se para fins didáticos: Es-<br/>toque disponível na uni-<br/>versidade federal do ABC<br/>do complexo sintetizado<br/>por alunos da disciplina de<br/>Química de Coordenação</li> </ul> | <ul> <li>Metal extremamente tó-<br/>xico</li> <li>Baixo rendimento</li> </ul>                                                                  |
|                    | <ul> <li>Ótimo rendimento</li> <li>Seletivo</li> <li>Maiores jazidas no Brasil</li> </ul>                                                                                                        | <ul> <li>Jazidas localizadas em ter-<br/>ras indígenas no Amazo-<br/>nas</li> <li>Exploração minerária traz<br/>impactos a Amazônia</li> </ul> |

| Tabela 7 – Com | paração dos | pontos positivos | s e negativos dos metais |
|----------------|-------------|------------------|--------------------------|

53

# PERSPECTIVA

Este projeto abre espaço para continuidade, com os dados experimentais obtidos e a realização da revisão bibliográfica, pode-se pesquisar formas de como aplicar a discussão da química associada a sociedade e meio ambiente na graduação, gerando debates que incentivem os alunos a tomarem decisões com base na eficácia do ácido de Lewis, toxicidade, disponibilidade, problemas sociais, éticos, ambientais e políticos.

A importância das florestas em pé na Amazônia: CARTILHAS. 2016. <a href="https://www.socioambiental.org/pt-br/blog/blog-domonitoramento/">https://www.socioambiental.org/pt-br/blog/blog-domonitoramento/</a> por-que-nao-minerar-em-terras-indigenas>. Instituto de Pesquisa Ambiental da Amazônia(IPAM). Citado 2 vezes nas páginas 49 e 50.

ANGOTTI, M.; LOURENÇO, R.; Sá, C.; FERREIRA, A. Garimpo de ouro, seus impactos socioambientais e políticas públicas: Caso de ensino baseado no filme "serra pelada". In: . [S.l.: s.n.], 2016. Citado na página 46.

BANZA, L. N. C.; NAWROT, S. T.; HAUFROID, V.; DECRÉE, S.; PUTTER, D. T.; SMOLDERS, E.; KABYLA, I. B.; LUBOYA, N. O.; ILUNGA, N. A.; MUTOMBO, M. A.; NEMERY, B. High human exposure to cobalt and other metals in katanga, a mining area of the democratic republic of congo. **Environmental Research**, p. 745–752, 2009. Citado na página 45.

BARBOSA, J. d. S.; SILVA, G. V. J. d.; CONSTANTINO, M. G. One-step synthesis of indanones through nbcl5-induced friedel-crafts reaction. **Tetrahedron Letters**, v. 46, n. 45, 2015. Citado na página 41.

BOA, T. M. R. F. **Recursos Minerais De Minas Gerais – Níquel E Cobalto**. Dissertação (Mestrado) — Universidade Federal de Minas Gerais, 2018. Citado na página 45.

CESAR, A. Riscos socioambientais dos resíduos tecnológicos: uma análise do tema legislação e suas implicações para a sociedade. **Tecnologia e Sociedade**, v. 7, dez. 2011. Citado na página 47.

CHEN, H.; PAPARIZOS, C.; FACKLER, J. Dimethylgold(iii) complexes. synthesis of several compounds with auc2s2 coordination. the crystal and molecular structure of [(ch3)2ausc2h5]2. **Inorganica Chimica Acta**, v. 96, n. 2, p. 137–149, 1985. Citado na página 36.

FONSECA, D. S. SumÁrio mineral 2012. **Departamento nacional de produção mineral, Brasília, Brasil**, v. 32, p. 53–54, 2013. Citado na página 45.

GAMBARINI, A. **Por que a Amazônia é importante?** 2019. <a href="https://www.wwf.org.br/">https://www.wwf.org.br/</a> natureza\_brasileira/areas\_prioritarias/amazonia1/bioma\_amazonia/porque\_amazonia\_e\_ importante/>. World Wide Fund for Nature (WWF-Brasil). Citado na página 50.

GOFF, H. M.; HINES, J.; GRIESEL, J.; MOSSMAN, C. Synthesis, characterization, and use of a cobalt(ii) complex as an nmr shift reagent: An integrated laboratory experiment. **Journal of Chemical Education**, v. 59, n. 5, p. 422, 1982. Citado na página 36.

IBGE. **GRÁFICOS e tabelas: Censo Demográfico 1991/2010**. 2019. <https://indigenas.ibge. gov.br/graficos-e-tabelas-2.html>. IBGE Instituto Brasileiro de Geografia e Estatística. Citado na página 49.

INFORMAÇÕES e análises da economia mineral Brasileira: Zinco. 2012. <<u>http://www.ibram.org.br/sites/1300/1382/00003797.pdf</u>>. Accesso: 7 ago. 2019. Citado na página 44.

ISOPROPYL Bromide. <a href="http://williestop.tripod.com/orgysynpages/isopropylbromide.html">http://williestop.tripod.com/orgysynpages/isopropylbromide.html</a>. Accesso: 8 jan. 2019. Citado na página 35.

JUNIOR, A. S.; CAMPOS, M. RelevÂncia das terras raras para o setor energÉtico. v. 1, p. 350–363, 2016. Citado na página 49.

KUDELKO, A.; WRóBLOWSKA, M. An efficient synthesis of conjugated 5-aryl-1,3,4oxadiazoles from 3-heteroarylacrylohydrazides and acid chlorides. **Tetrahedron Letters**, v. 55, n. 21, p. 3252–3254, 2014. Citado na página 35.

LIMA, D. Avaliação Da Contaminação Por Metais Pesados Na Água E Nos Peixes Da Bacia Do Rio Cassiporé. Dissertação (Mestrado) — Universidade Federal Do Amapá, 2013. Citado na página 47.

LIMA., J. M. G. de. MinistÉrio de minas e energia - mme secretaria de geologia, mineraÇÃo e transformaÇÃo mineral-sgm (brasil) produto 11 perfil da mineração do nióbio. CONTRATO Nº 48000.003155/2007-17, n. DESENVOLVIMENTO DE ESTUDOS PARA ELABORAÇÃO DO PLANO DUODECENAL (2010 - 2030) DE GEOLOGIA, MINERAÇÃO E TRANSFORMA-ÇÃO MINERAL, 2010. Citado na página 48.

LIMA, V. F.; MERCON, F. Metais pesados no ensino de química. **QUÍMICA NOVA NA ESCOLA**, v. 33, nov. 2011. Citado na página 48.

LIMINAR determina indeferimento de todos os pedidos de mineração em terras indígenas no AM. 2019. <a href="http://www.mpf.mp.br/am/sala-deimprensa/noticias-am/liminar-determina-indeferimento-de-todos-os-pedidos-demineracao-em-terras-indigenas-no-am-Acesso: 22 ago. 2019">http://www.mpf.mp.br/am/sala-deimprensa/noticias-am/liminar-determina-indeferimento-de-todos-os-pedidos-demineracao-em-terras-indigenas-no-am-Acesso: 22 ago. 2019. Citado na página 49.

LOBATO, L. M.; COSTA, M. A. da; HAGEMANN, S. G.; MARTINS, R. Recursos minerais no brasil problemas e desafios: Ouro no brasil: principais depósitos, produção e perspectivas. p. 46–56, 2016. Citado na página 46.

MADEIRO, C. **Queimadas na Amazônia: Percentual em agosto é o maior já medido pelo Inep.** 2019. <https://noticias.uol.com.br/meio-ambiente/ultimas-noticias/redacao/2019/08/21/ queimadas-na-amazonia-percentual-em-agosto-e-o-maior-ja-medido-pelo-inpe.htm>. Uol Notícias. Citado na página 50.

MEDEIROS, M. de A. Elemento químico: Zinco. **QUÍMICA NOVA NA ESCOLA**, v. 34, n. 3, p. 159–160, 2012. Citado na página 44.

MICARONI, R. C. A. d. C. M.; BUENO, M. I. M. S.; JARDIM, W. d. F. Compostos de mercúrio.revisão de métodos de determinação, tratamento e descarte. **Química Nova**, scielo, v. 23, p. 487 – 495, 08 2000. Citado na página 47.

NETO, H. de A. MinistÉrio de minas e energia - mme secretaria de geologia, minera-ÇÃo e transformaÇÃo mineral-sgm (brasil) produto 19 minério de ouro. CONTRATO Nº 48000.003155/2007-17, n. DESENVOLVIMENTO DE ESTUDOS PARA ELABORAÇÃO DO PLANO DUODECENAL (2010 - 2030) DE GEOLOGIA, MINERAÇÃO E TRANSFORMA-ÇÃO MINERAL, 2009. Citado na página 46.

NEVES, C. A. R. Zinco: Departamento Nacional de Produção Mineral (DNPM). <a href="https://sistemas.dnpm.gov.br/publicacao/mostra\_imagem.asp?IDBancoArquivoArquivo=3985">https://sistemas.dnpm.gov.br/publicacao/mostra\_imagem.asp?IDBancoArquivoArquivo=3985</a>. Accesso: 19 ago. 2019. Citado na página 44.

OLIVEIRA, E. Amazônia em chamas? O que se sabe sobre a evolução das queimadas no Brasil. 2019. <a href="https://gl.globo.com/natureza/noticia/2019/08/23/amazonia-em-chamas-o-que-se-sabe-sobre-a-evolucao-das-queimadas-no-brasil.ghtml">https://gl.globo.com/natureza/noticia/2019/08/23/amazonia-em-chamas-o-que-se-sabe-sobre-a-evolucao-das-queimadas-no-brasil.ghtml</a>. G1. Citado na página 50.

OLIVEIRA, J. S.; MARTINS, M.; APPELT, H. R. Trilogia: Química, sociedade e consumo. **Quimica nova na escola**, p. 140–144, fev. 2010. Citado 2 vezes nas páginas 27 e 28.

POR que não minerar em Terras Indígenas? 2016. <https://www.socioambiental.org/pt-br/ blog/blog-domonitoramento/por-que-nao-minerar-em-terras-indigenas>. Acesso: 22 ago. 2019. Citado na página 49.

RADLER. J. População indígena protesta contra mineração em São Gabriel da Cachoeira (AM): Instituto Socioambiental. 2017. <https://www.socioambiental.org/pt-br/noticias-socioambientais/ populacaoindigena-protesta-contra-mineracao-em-sao-gabriel-da-cachoeira-am>. Accesso: 22 ago. 2019. Citado na página 49.

RUSSO, M. L. C. **Beneficiamento De Rejeito De Minério De Zinco.** Dissertação (Mestrado) — Universidade Federal de Ouro Preto, 2007. Citado na página 44.

SANTOS, J. F. dos. MinistÉrio de minas e energia - mme secretaria de geologia, mineraÇÃo e transformaÇÃo mineral-sgm. CONTRATO Nº 48000.003155/2007-17, n. DESENVOLVI-MENTO DE ESTUDOS PARA ELABORAÇÃO DO PLANO DUODECENAL (2010 - 2030) DE GEOLOGIA, MINERAÇÃO E TRANSFORMAÇÃO MINERAL, 2009. Citado na página 44.

SANTOS, R.; NAVA, D.; FERREIRA, A. Recursos minerais em terras indígenas do estado do amazonas: gargalos, potencialidades e perspectivas. **Revista Brasileira de Geociências**, v. 39, p. 669–678, dez. 2009. Citado na página 49.

SANTOS, W. L. P. d.; SOUZA, M. Gerson de; DA, S. R. R.; DE, C. E. N. F.; SOUZA, S. Gentil de; ROSELI, T. M.; OLIVEIRA, S. Sandra Maria de; FRANÇA, D. S. M. Química e sociedade: um projeto brasileiro para o ensino de química por meio de temas cts. Educació química, p. 20–28, sep. 2009. Citado na página 27.

SARVARI, M. H.; SHARGHI, H. Reactions on a solid surface. a simple, economical and erfficient friedel-crafts acylation reaction over zinc oxide (zno) as a new catalyst. **The Journal of Organic Chemistry**, v. 69, n. 20, p. 6953–6956, 2004. Citado 2 vezes nas páginas 36 e 37.

SCHEELE, F.; HAAN, E. de; KIEZEBRINK, V. Cobalt blues environmental pollution and human rights violations in katanga's copper and cobalt mines. **SOMO**, 2016. Citado na página 45.

SHRIVER, D.; ATKINS, P. Química Inorgânica. [S.l.]: Bookman, 2008. Citado na página 45.

Sjöström, J. Towards Bildung-Oriented Chemistry Education. Science & Education, v. 22, n. 7, p. 1873–1890, jul. 2013. Citado 2 vezes nas páginas 29 e 30.

SKY NEWS. **Special Report: Unseen Africa with Alex Crawford**. YOUTUBE. Disponível em: <<u>https://www.youtube.com/watch?v=25fQfCzCpxk&feature=youtu.be></u>. Citado na página 46.

SMITH, R. A. Studies in the rearrangements of phenyl ethers. the course of the reaction in the presence of foreign aromatic bodies. **Journal of the American Chemical Society**, v. 56, n. 3, p. 717–718, 1934. Citado na página 35.

SOLOMONS, T.; FRYHLE, C. **Química orgânica 1**. [S.l.]: LTC, 2005. (Química orgânica, v. 1). Citado na página 29.

SOUSA, R. M. F. de; FERNANDES, L. E.; GUERRA, W. Elemento químico: NiÓbio. **QUÍ-MICA NOVA NA ESCOLA**, v. 35, n. 1, p. 68 – 69, fev. 2013. Citado na página 48.

SOUZA, F. R. IMPACTO DO PREÇO DO PETRÓLEO NA POLÍTICA ENERGÉTICA MUNDIAL. 290 p. Dissertação (Mestrado) — Universidade Federal do Rio de Janeiro, 2006. Citado na página 28.

TAMILSELVAN, P.; BASAVARAJU, Y. B.; MURUGESAN, R.; SAMPATHKUMAR, E. Cobalt(ii) acetylacetonate catalyzed friedel–crafts acylation of anisole, thioanisole, and toluene. **Catalysis Communications**, v. 10, n. 3, p. 300–303, 2008. Citado na página 39.

VALCARCEL, M.; CHRISTIAN, G. D.; LUCENA, R. Teaching social responsibility in analytical chemistry. **Analytical Chemistry**, v. 85, n. 13, p. 6152–6161, 2013. Citado na página 28.

VITORIO, T. Queimadas na Amazônia podem ser vistas do 2019. espaço, mostra Nasa. <https://exame.abril.com.br/brasil/ queimadas-na-amazonia-podem-ser-vistas-do-espaco-mostra-nasa/>. Exame. Citado na página 50.

VOLLHARDT, P.; SCHORE, N. **Química Orgânica: Estrutura e Função**. [S.l.]: Bookman, 2013. Citado na página 28.

ZOLLER, U. Education in environmental chemistry: Setting the agenda and recommending action. a workshop report summary. **Journal of Chemical Education**, v. 82, n. 8, p. 1237, 2005. Citado na página 28.

# APÊNDICE A

# ESPECTROS DE RMN ${}^{1}H$ , RAMAN E IV

# A.1 Síntese Reagentes

## A.1.1 Isopropoxibenzeno



Figura 9 – RMN <sup>1</sup>*H* do composto Isopropoxibenzeno em  $CDCl_3$  / 60 MHz / Intervalo  $\delta$  = 0 a 8 ppm

# **A.1.2** Co(acac)<sub>2</sub>



Figura 10 – Infravermelho do complexo  $Co(Acac)_2$ 



Figura 11 – Infravermelho do complexo Co(Acac)<sub>2</sub> (literatura) Fonte: Spectral Database for Organic Compounds (SDBS, 1999)

# **A.1.3** Au<sub>2</sub>Cl<sub>6</sub>



Figura 12 – Raman do composto Au<sub>2</sub>Cl<sub>6</sub>



Figura 13 – Raman do Au<sub>2</sub>Cl<sub>6</sub> (literatura) Fonte: NALBANDIAN , L.; PAPATHEODOROU , G.N. Raman spectra and molecular vibrations of Au<sub>2</sub>Cl<sub>6</sub> and Au<sub>A</sub>ICl<sub>6</sub>. Elsevier Science, Vibrational Spectroscopy, 1992.

# A.2 Reações de Friedel-Crafts

### A.2.1 Anisol

A.2.1.1 ZnO

BIA\_07112018



Figura 14 – RMN <sup>1</sup>H da reação anisol com ZnO em  $CDCl_3$  / 500 MHz Intervalo  $\delta$  = 0 a 9 ppm



Figura 15 – RMN <sup>1</sup>*H* da reação anisol com ZnO em *CDCl*<sub>3</sub> / 500 MHz Intervalo  $\delta$  = 5.3 a 8.3 ppm



Figura 16 – RMN <sup>1</sup>*H* da reação anisol com ZnO em *CDCl*<sub>3</sub> / 500 MHz Intervalo  $\delta$  = 7.8 a 8.3 ppm



Figura 17 – RMN <sup>1</sup>*H* da reação anisol com ZnO em *CDCl*<sub>3</sub> / 500 MHz Intervalo  $\delta$  = 7.2 a 7.7 ppm



Figura 18 – RMN <sup>1</sup>*H* da reação anisol com ZnO em *CDCl*<sub>3</sub> / 500 MHz Intervalo  $\delta$  = 6.8 a 7.1 ppm



Figura 19 – RMN <sup>1</sup>*H* da reação anisol com ZnO em *CDCl*<sub>3</sub> / 500 MHz Intervalo  $\delta$  = 3.6 a 4.1 ppm



#### A.2.1.2 $Co(acac)_2$

Figura 20 – RMN <sup>1</sup>*H* da reação anisol com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 0 a 9 ppm



Figura 21 – RMN <sup>1</sup>*H* da reação anisol com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 3.0 a 4.5 ppm



Figura 22 – RMN <sup>1</sup>*H* da reação anisol com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 4.5 a 6.0 ppm


Figura 23 – RMN <sup>1</sup>*H* da reação anisol com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 6.5 a 8.5 ppm

## $A.2.1.3 \quad Au_2Cl_6$



Figura 24 – RMN <sup>1</sup>*H* da reação anisol com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  =0 a 10 ppm



Figura 25 – RMN <sup>1</sup>*H* da reação anisol com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 9 a 10 ppm



Figura 26 – RMN <sup>1</sup>*H* da reação anisol com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 6.5 a 9.0 ppm



Figura 27 – RMN <sup>1</sup>*H* da reação anisol com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 3.5 a 5.5 ppm



Figura 28 – RMN <sup>1</sup>*H* da reação anisol com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 0.8 a 2.4 ppm

#### A.2.1.4 NbCl<sub>5</sub>



Figura 29 – RMN <sup>1</sup>H da reação anisol com NbCl<sub>5</sub> em CDCl<sub>3</sub>/CH<sub>2</sub>Cl<sub>2</sub> / 60 MHz / Intervalo  $\delta$  =0 a 10 ppm



Figura 30 – RMN <sup>1</sup>*H* da reação anisol com *NbCl*<sub>5</sub> em *CDCl*<sub>3</sub>/*CH*<sub>2</sub>*Cl*<sub>2</sub> / 60 MHz / Intervalo  $\delta$  = 6.5 a 8.5 ppm



Figura 31 – RMN <sup>1</sup>*H* da reação anisol com *NbCl*<sub>5</sub> em *CDCl*<sub>3</sub>/*CH*<sub>2</sub>*Cl*<sub>2</sub> / 60 MHz / Intervalo  $\delta$  = 4.5 a 6.5 ppm



Figura 32 – RMN <sup>1</sup>*H* da reação anisol com *NbCl*<sub>5</sub> em *CDCl*<sub>3</sub>/*CH*<sub>2</sub>*Cl*<sub>2</sub> / 60 MHz / Intervalo  $\delta$  = 3.5 a 4.5 ppm

## A.2.1.5 $K_3[Cr(C_2O_4)_3]$



Figura 33 – RMN <sup>1</sup>*H* da reação anisol com  $K_3[Cr(C_2O_4)_3]$  em *CDCl*<sub>3</sub>/*CH*<sub>2</sub>*Cl*<sub>2</sub> / 60 MHz / Intervalo  $\delta$  = 0.0 a 12.5 ppm



Figura 34 – RMN <sup>1</sup>*H* da reação anisol com  $K_3[Cr(C_2O_4)_3]$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 10.5 a 13.0 ppm



Figura 35 – RMN <sup>1</sup>*H* da reação anisol com  $K_3[Cr(C_2O_4)_3]$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 5.0 a 8.5 ppm

# A.2.1.6 $Hg[Co(SCN)_4]$



Figura 36 – RMN <sup>1</sup>*H* da reação anisol com  $Hg[Co(SCN)_4]$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta = 0$  a 12 ppm



Figura 37 – RMN <sup>1</sup>*H* da reação anisol com  $Hg[Co(SCN)_4]$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 10 a 12 ppm



Figura 38 – RMN <sup>1</sup>H da reação anisol com  $Hg[Co(SCN)_4]$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 5 a 9 ppm



Figura 39 – RMN <sup>1</sup>*H* da reação anisol com  $Hg[Co(SCN)_4]$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 1.5 a 4.5 ppm

# A.2.2 Isopropoxibenzeno

### A.2.2.1 ZnO



Figura 40 – RMN <sup>1</sup>*H* da reação isopropoxibenzeno com *ZnO CDCl*<sub>3</sub>/*CH*<sub>2</sub>*Cl*<sub>2</sub> / 60 MHz / Intervalo  $\delta$  = 0 a 9 ppm

#### A.2.2.2 $Co(acac)_2$



Figura 41 – RMN <sup>1</sup>*H* da reação isopropoxibenzeno com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta = 0$  a 10 ppm



Figura 42 – RMN <sup>1</sup>*H* da reação isoproposibenzeno com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta = 6$  a 9 ppm



Figura 43 – RMN <sup>1</sup>*H* da reação isopropoxibenzeno com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta = 2$  a 5 ppm



Figura 44 – RMN  $^1H$ da reação isopropoxibenzeno com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo $\delta$  = 0.8 a 2.0 ppm

## A.2.2.3 $Au_2Cl_6$



Figura 45 – RMN <sup>1</sup>*H* da reação isopropoxibenzeno com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  =0 a 10 ppm



Figura 46 – RMN <sup>1</sup>*H* da reação isopropoxibenzeno com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 6.5 a 9.0 ppm



Figura 47 – RMN <sup>1</sup>*H* da reação isopropoxibenzeno com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 3.5 a 6.0 ppm



Figura 48 – RMN <sup>1</sup>*H* da reação isopropoxibenzeno com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = -1.0 a 2.5 ppm

## A.2.3 N,N-dimetilanilina

A.2.3.1 ZnO



Figura 49 – RMN <sup>1</sup>*H* da reação N,N-dimetilanilina com ZnO em *CDCl*<sub>3</sub>/*CH*<sub>2</sub>*Cl*<sub>2</sub> / 60 MHz / Intervalo  $\delta$  = 0 a 9 ppm



Figura 50 – RMN <sup>1</sup>*H* da reação N,N-dimetilanilina com ZnO em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 6.5 a 8.5 ppm



Figura 51 – RMN <sup>1</sup>*H* da reação N,N-dimetilanilina com ZnO em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 4 a 6 ppm



Figura 52 – RMN <sup>1</sup>*H* da reação N,N-dimetilanilina com ZnO em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta = 0$  a 4 ppm

### A.2.3.2 $Co(acac)_2$



Figura 53 – RMN <sup>1</sup>*H* da reação N,N-dimetilanilina com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta = 0$  a 10 ppm



Figura 54 – RMN <sup>1</sup>*H* da reação N,N-dimetilanilina com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 9.2 a 10.2 ppm



Figura 55 – RMN  $^1H$ da reação N,N-dimetilanilina com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo $\delta$  = 6.5 a 9.0 ppm



Figura 56 – RMN  $^1H$ da reação N,N-dimetilanilina com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo $\delta$  = 4.8 a 6.0 ppm



Figura 57 – RMN <sup>1</sup>*H* da reação N,N-dimetilanilina com  $Co(acac)_2$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta = 1$  a 4 ppm

### A.2.3.3 Au<sub>2</sub>Cl<sub>6</sub>



Figura 58 – RMN <sup>1</sup>H da reação N,N-dimetilanilina com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 0 a 9 ppm


Figura 59 – RMN <sup>1</sup>H da reação N,N-dimetilanilina com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 7.0 a 8.5 ppm



Figura 60 – RMN <sup>1</sup>*H* da reação N,N-dimetilanilina com  $Au_2Cl_6$  em  $CDCl_3/CH_2Cl_2$  / 60 MHz / Intervalo  $\delta$  = 2.8 a 4.0 ppm

# APÊNDICE B

# B.1 Anisol

## **B.1.1** ZnO



Figura 61 – Cromatograma da reação Anisol com ZnO

| No | o. Name             | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Formula  | M       | Base Peak Mass | tR (min) |
|----|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------------|----------|
| 3  | p-metóxibenzofenona | $H_{3_{8}}^{C}$ $7$ $2^{2^{3}}$ $H_{1_{5}}^{O}$ $H_{1_{5}}^{O$ | C14H12O2 | 212.084 | 135.200        | 16.965   |



#### Anisol com ZnO

Figura 63 – Espectro de Massas; Reação Anisol com ZnO; T.R.=7.8; Ácido benzóico

| No. | m/z     | TIC(%) |
|-----|---------|--------|
| 1   | 50.000  | 2.588  |
| 2   | 51.000  | 4.385  |
| 3   | 52.100  | 0.671  |
| 4   | 53.000  | 0.268  |
| 5   | 54.000  | 0.031  |
| 6   | 55.000  | 0.073  |
| 7   | 60.100  | 0.003  |
| 8   | 61.100  | 0.229  |
| 9   | 62.100  | 0.235  |
| 10  | 63.100  | 0.245  |
| 11  | 64.100  | 0.025  |
| 12  | 65.100  | 0.661  |
| 13  | 66.200  | 0.479  |
| 14  | 67.200  | 0.020  |
| 15  | 68.400  | 0.005  |
| 16  | 69.300  | 0.008  |
| 17  | 70.700  | 0.005  |
| 18  | 72.200  | 0.002  |
| 19  | 73,100  | 0.319  |
| 20  | 74.100  | 1.373  |
| 21  | 75.100  | 0.933  |
| 22  | 76 100  | 1 214  |
| 23  | 77 100  | 21,956 |
| 24  | 78 100  | 1 796  |
| 25  | 79 100  | 0.320  |
| 26  | 80 100  | 0.020  |
| 27  | 81,000  | 0.002  |
| 28  | 85 100  | 0.002  |
| 20  | 89 300  | 0.018  |
| 30  | 91 200  | 0.016  |
| 31  | 92 100  | 0.010  |
| 32  | 93 100  | 0.045  |
| 33  | 94 200  | 0.130  |
| 24  | 94.200  | 0.070  |
| 34  | 95.200  | 0.200  |
| 35  | 104 100 | 0.005  |
| 30  | 104.100 | 20.709 |
| 20  | 105.100 | 29.700 |
| 30  | 107 100 | 0.120  |
| 40  | 109.200 | 0.120  |
| 40  | 111 200 | 0.012  |
| 41  | 115 100 | 0.001  |
| 42  | 110,100 | 0.002  |
| 43  | 101.000 | 0.005  |
| 44  | 121.200 | 0.174  |
| 45  | 122.100 | 26.141 |
| 46  | 123.100 | 1.998  |
| 4/  | 124.000 | 0.259  |
| 48  | 154.200 | 0.003  |
| 49  | 179.200 | 0.002  |
| 50  | 180.200 | 0.001  |
| 51  | 202.200 | 0.003  |
| 52  | 210.300 | 0.019  |
| 53  | 266.900 | 0.003  |
| 54  | 355.000 | 0.003  |

## Anisol com ZnO

| Formula (                | C_H_O_2  | FW 2                | 212.2439      |                  |               |             |                                         |                 |               |
|--------------------------|----------|---------------------|---------------|------------------|---------------|-------------|-----------------------------------------|-----------------|---------------|
| Count                    |          | 114                 | Data Type     | Centroid         | Date          | 01          | Mar 19 12:4                             | 1 pm            |               |
| File Name                | e        | 1_3-1-2019_/        | ANISOL_ZNO_E  | BRUTO_1_Centro   | oid Inlet IV  | lodel G     | С                                       | Mass Spec Model | Varian Saturn |
| Plot Type                |          | Stick               | Retention Tir | <b>ne</b> 15.416 | Scan          | 46          | 64                                      | TIC             | 589.49        |
| Total Sign<br>1_3-1-2015 | 9_ANISOL | 3403405<br>ZNO_BRU1 | TO_1_CENTRO   | ID.ESP           | 1357          |             |                                         | O<br>CH         | 3             |
| 517                      |          |                     | 92 -          | 121 7            |               | 16<br>152 - | <sup>37</sup> 7<br>    181 <sup>.</sup> | 195-7           | 212           |
|                          | 60 70    | 80                  | 90 100        | 110 120 1        | 30 140<br>m/z | 150 160     | 170 18                                  | 0 190 200       | 210 220       |
| No.                      | m/z      | RI(%)               | DI            |                  |               |             |                                         |                 |               |
| 1 7                      | 77.300   | 69.721              | 402535.063    |                  |               |             |                                         |                 |               |
| 2 7                      | 79.300   | 11.221              | 64785.000     |                  |               |             |                                         |                 |               |
| 3 9                      | 92.300   | 13.390              | 77309.000     |                  |               |             |                                         |                 |               |
| 4 1                      | 05.400   | 21.121              | 121945.016    |                  |               |             |                                         |                 |               |
| 5 1                      | 21.400   | 38.985              | 225081.031    |                  |               |             |                                         |                 |               |
| 7 1                      | 67 400   | 20 134              | 116245 000    |                  |               |             |                                         |                 |               |
| 8 1                      | 94,400   | 40,295              | 232644.016    |                  |               |             |                                         |                 |               |
| 9 1                      | 95.300   | 44.224              | 255327.016    |                  |               |             |                                         |                 |               |
| 10 1                     | 97.200   | 21.459              | 123893.016    |                  |               |             |                                         |                 |               |
| 11 2                     | 211.200  | 11.788              | 68059.000     |                  |               |             |                                         |                 |               |
| 12 2                     | 212.100  | 47.999              | 277126.031    |                  |               |             |                                         |                 |               |

Figura 65 – Espectro de Massas; Reação Anisol com ZnO; T.R.= 15.4; o-metóxibenzofenona

| No. | m/z    | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|--------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.100 | 0.591  | 30  | 89.300  | 0.171  | 59  | 126.400 | 0.077  | 88  | 171.200 | 0.013  |
| 2   | 51.100 | 1.695  | 31  | 90.400  | 0.046  | 60  | 127.400 | 0.030  | 89  | 177.400 | 0.079  |
| 3   | 52.100 | 0.099  | 32  | 91.400  | 0.685  | 61  | 128.500 | 0.037  | 90  | 178.400 | 0.035  |
| 4   | 53.100 | 0.059  | 33  | 92.300  | 2.272  | 62  | 129.500 | 0.024  | 91  | 179.300 | 0.001  |
| 5   | 57.700 | 0.002  | 34  | 93.400  | 0.229  | 63  | 133.500 | 0.347  | 92  | 180.300 | 0.109  |
| 6   | 61.200 | 0.044  | 35  | 94.300  | 0.010  | 64  | 134.500 | 0.671  | 93  | 181.400 | 0.880  |
| 7   | 62.200 | 0.160  | 36  | 95.400  | 0.085  | 65  | 135.400 | 16.964 | 94  | 182.400 | 0.135  |
| 8   | 63.200 | 1.024  | 37  | 98.300  | 0.040  | 66  | 136.400 | 1.186  | 95  | 183.400 | 0.502  |
| 9   | 64.300 | 0.551  | 38  | 99.200  | 0.011  | 67  | 137.400 | 0.108  | 96  | 184.400 | 0.052  |
| 10  | 65.300 | 0.161  | 39  | 100.300 | 0.006  | 68  | 138.300 | 0.006  | 97  | 185.400 | 0.006  |
| 11  | 66.300 | 0.026  | 40  | 101.500 | 0.001  | 69  | 139.300 | 0.417  | 98  | 193.500 | 0.470  |
| 12  | 69.100 | 0.021  | 41  | 102.300 | 0.021  | 70  | 140.400 | 0.091  | 99  | 194.400 | 6.836  |
| 13  | 69.900 | 0.008  | 42  | 104.700 | 0.032  | 71  | 141.300 | 0.354  | 100 | 195.300 | 7.502  |
| 14  | 73.400 | 0.001  | 43  | 105.400 | 3.583  | 72  | 142.400 | 0.023  | 101 | 196.300 | 1.170  |
| 15  | 74.300 | 0.253  | 44  | 106.400 | 0.303  | 73  | 150.400 | 0.116  | 102 | 197.200 | 3.640  |
| 16  | 75.300 | 0.305  | 45  | 107.400 | 0.916  | 74  | 151.400 | 0.330  | 103 | 198.200 | 0.427  |
| 17  | 76.400 | 0.801  | 46  | 108.400 | 0.032  | 75  | 152.400 | 1.107  | 104 | 199.200 | 0.033  |
| 18  | 77.300 | 11.827 | 47  | 111.300 | 0.007  | 76  | 153.400 | 0.565  | 105 | 209.300 | 0.002  |
| 19  | 78.300 | 1.161  | 48  | 113.500 | 0.056  | 77  | 154.400 | 0.081  | 106 | 210.400 | 0.031  |
| 20  | 79.300 | 1.904  | 49  | 114.400 | 0.034  | 78  | 155.400 | 0.119  | 107 | 211.200 | 2.000  |
| 21  | 80.300 | 0.110  | 50  | 115.500 | 0.581  | 79  | 156.400 | 0.001  | 108 | 212.100 | 8.143  |
| 22  | 81.200 | 0.001  | 51  | 116.400 | 0.046  | 80  | 163.500 | 0.013  | 109 | 213.000 | 1.140  |
| 23  | 82.300 | 0.006  | 52  | 118.400 | 0.033  | 81  | 164.400 | 0.005  | 110 | 214.000 | 0.082  |
| 24  | 83.300 | 0.001  | 53  | 119.400 | 0.052  | 82  | 165.400 | 1.179  | 111 | 226.500 | 0.006  |
| 25  | 84.300 | 0.005  | 54  | 120.500 | 0.363  | 83  | 166.400 | 0.404  | 112 | 228.200 | 0.027  |
| 26  | 85.400 | 0.005  | 55  | 121.400 | 6.613  | 84  | 167.400 | 3.416  | 113 | 229.500 | 0.013  |
| 27  | 86.300 | 0.043  | 56  | 122.400 | 0.402  | 85  | 168.400 | 0.693  | 114 | 231.400 | 0.006  |
| 28  | 87.300 | 0.067  | 57  | 123.400 | 0.009  | 86  | 169.300 | 0.643  |     |         |        |
| 29  | 88.200 | 0.007  | 58  | 125.300 | 0.001  | 87  | 170.400 | 0.074  |     |         |        |

## Anisol com ZnO

| Count              | 93          | Data Type    | Centroid     | Date           |        | 01 Mar 19 1 | 2:41 pm |                  |          |       |
|--------------------|-------------|--------------|--------------|----------------|--------|-------------|---------|------------------|----------|-------|
| ile Name           | 1 3-1-2019  | ANISOL ZNO   | BRUTO 1 Cent | roid Inlet I   | /lode/ | GC          | Mass    | Spec Model       | Varian S | aturn |
| Plot Type          | Stick       | Retention Ti | me 16.965    | Scan           |        | 526         | TIC     |                  | 265.83   |       |
| otal Signal        | 33485284    |              |              |                |        |             |         |                  |          |       |
|                    |             |              |              |                |        | H₃C         | _0      |                  |          |       |
| 3-1-2019_ANI       | SOL_ZNO_BRU | TO_1_CENTRC  | DID.ESP      | 1357           |        |             |         |                  |          |       |
|                    |             |              |              |                |        |             |         |                  | 212      |       |
|                    | 777         | 92-ı 107     | 7            |                |        |             | 181 -   |                  |          |       |
| 51 ך <sup>51</sup> |             |              | ן 125        |                | ן152   |             |         | ר <sup>197</sup> |          |       |
| 50 60              | 70 80       | 90 100       | 110 120      | 130 140<br>m/z | 150    | 160 170     | 180     | 190 200          | 210      | 220   |
| lo. <i>m/z</i>     | RI(%)       | DI           |              |                |        |             |         |                  |          |       |
| 1 77.100           | 25.044      | 3154667.500  |              |                |        |             |         |                  |          |       |
| 2 135.200          | 100.000     | 12596295.000 |              |                |        |             |         |                  |          |       |
| 040 400            | E0 624      | 7295220 000  |              |                |        |             |         |                  |          |       |

Figura 67 – Espectro de Massas; Reação Anisol com ZnO; T.R.= 17.0; p-metóxibenzofenona

| No. | m/z    | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|--------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.000 | 0.450  | 25  | 88.200  | 0.057  | 49  | 116.300 | 0.075  | 73  | 167.200 | 0.004  |
| 2   | 51.000 | 1.111  | 26  | 89.100  | 0.157  | 50  | 119.200 | 0.120  | 74  | 168.200 | 0.276  |
| 3   | 52.100 | 0.045  | 27  | 90.100  | 0.026  | 51  | 121.200 | 0.001  | 75  | 169.200 | 0.802  |
| 4   | 53.100 | 0.058  | 28  | 91.200  | 0.033  | 52  | 125.300 | 0.155  | 76  | 170.200 | 0.105  |
| 5   | 54.200 | 0.008  | 29  | 92.200  | 2.284  | 53  | 126.200 | 0.066  | 77  | 176.100 | 0.005  |
| 6   | 61.100 | 0.012  | 30  | 93.200  | 0.139  | 54  | 127.200 | 0.018  | 78  | 180.200 | 0.095  |
| 7   | 62.000 | 0.166  | 31  | 94.100  | 0.018  | 55  | 133.300 | 0.001  | 79  | 181.200 | 2.228  |
| 8   | 63.100 | 1.080  | 32  | 95.200  | 0.057  | 56  | 134.300 | 0.007  | 80  | 182.200 | 0.309  |
| 9   | 64.100 | 1.061  | 33  | 97.200  | 0.004  | 57  | 135.200 | 37.617 | 81  | 183.300 | 0.022  |
| 10  | 65.100 | 0.078  | 34  | 98.100  | 0.007  | 58  | 136.200 | 3.029  | 82  | 184.200 | 0.171  |
| 11  | 66.100 | 0.020  | 35  | 99.200  | 0.012  | 59  | 137.200 | 0.318  | 83  | 195.200 | 0.190  |
| 12  | 69.700 | 0.013  | 36  | 100.200 | 0.008  | 60  | 139.200 | 0.449  | 84  | 196.200 | 0.234  |
| 13  | 73.200 | 0.002  | 37  | 101.100 | 0.018  | 61  | 140.200 | 0.176  | 85  | 197.200 | 0.248  |
| 14  | 74.200 | 0.204  | 38  | 102.100 | 0.014  | 62  | 141.200 | 0.572  | 86  | 211.300 | 1.351  |
| 15  | 75.100 | 0.267  | 39  | 103.400 | 0.003  | 63  | 142.200 | 0.063  | 87  | 212.100 | 22.055 |
| 16  | 76.100 | 0.490  | 40  | 104.200 | 0.053  | 64  | 149.200 | 0.002  | 88  | 213.100 | 2.975  |
| 17  | 77.100 | 9.421  | 41  | 105.200 | 2.348  | 65  | 150.100 | 0.032  | 89  | 214.100 | 0.335  |
| 18  | 78.100 | 0.680  | 42  | 106.200 | 0.176  | 66  | 151.200 | 0.155  | 90  | 215.100 | 0.001  |
| 19  | 79.100 | 0.460  | 43  | 107.200 | 2.435  | 67  | 152.200 | 0.534  | 91  | 218.300 | 0.011  |
| 20  | 80.200 | 0.022  | 44  | 108.300 | 0.124  | 68  | 153.200 | 0.380  | 92  | 289.100 | 0.002  |
| 21  | 81.200 | 0.000  | 45  | 111.200 | 0.037  | 69  | 154.200 | 0.040  | 93  | 319.200 | 0.007  |
| 22  | 84.800 | 0.000  | 46  | 113.200 | 0.101  | 70  | 155.300 | 0.041  |     |         |        |
| 23  | 86.200 | 0.018  | 47  | 114.200 | 0.104  | 71  | 156.200 | 0.002  |     |         |        |
| 24  | 87.100 | 0.020  | 48  | 115.300 | 0.796  | 72  | 165.300 | 0.025  |     |         |        |

Figura 68 – Espectro de Massas; Reação Anisol com ZnO; T.R.= 17.0; p-metóxibenzofenona (continuação)

## **B.1.2** Co(acac)<sub>2</sub>



## Anisol com Co(acac)2

Figura 69 – Cromatograma da reação Anisol com  $Co(acac)_2$ 

| No. | Name                | Structure                                                                                                                                                                                                                    | Formula  | M       | Base Peak Mass | tR (min) |
|-----|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------------|----------|
| 2   | o-metóxibenfenona   | $\begin{array}{c} 0 \\ 9 \\ 9 \\ 7 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $                                                                                                                                               | C14H12O2 | 212.084 | 135.100        | 16.385   |
| 3   | p-metóxibenzofenona | 0<br>5<br>5<br>6<br>4<br>4<br>2<br>12<br>14<br>15<br>0<br>5<br>15<br>0<br>15<br>0<br>15<br>0<br>16<br>0<br>15<br>0<br>16<br>0<br>15<br>0<br>16<br>10<br>11<br>10<br>10<br>11<br>10<br>10<br>11<br>10<br>10<br>10<br>10<br>10 | C14H12O2 | 212.084 | 135.100        | 18.017   |



## Anisol com Co(acac)2

Figura 71 – Espectro de Massas; Reação Anisol com Co(acac)<sub>2</sub>; T.R.= 8.3; Ácido benzóico

| No. | m/z    | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|--------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 49.900 | 2.366  | 30  | 91.100  | 0.002  | 59  | 153.400 | 0.001  | 88  | 587.400 | 0.000  |
| 2   | 50.900 | 3.746  | 31  | 91.900  | 0.022  | 60  | 154.300 | 0.001  | 89  | 617.900 | 0.001  |
| 3   | 51.900 | 0.508  | 32  | 93.000  | 0.115  | 61  | 162.400 | 0.001  | 90  | 640.100 | 0.001  |
| 4   | 52.900 | 0.292  | 33  | 94.000  | 0.674  | 62  | 166.900 | 0.000  | 91  | 675.500 | 0.000  |
| 5   | 53.800 | 0.019  | 34  | 95.000  | 0.245  | 63  | 167.900 | 0.005  | 92  | 676.500 | 0.001  |
| 6   | 54.900 | 0.009  | 35  | 96.000  | 0.068  | 64  | 179.000 | 0.033  | 93  | 677.700 | 0.001  |
| 7   | 56.700 | 0.000  | 36  | 98.900  | 0.003  | 65  | 179.900 | 0.000  | 94  | 695.100 | 0.001  |
| 8   | 60.100 | 0.041  | 37  | 103.100 | 0.028  | 66  | 180.700 | 0.005  | 95  | 732.100 | 0.000  |
| 9   | 61.000 | 0.258  | 38  | 104.000 | 0.204  | 67  | 186.900 | 0.000  | 96  | 733.100 | 0.001  |
| 10  | 61.900 | 0.308  | 39  | 104.900 | 31.050 | 68  | 193.000 | 0.004  | 97  | 763.800 | 0.001  |
| 11  | 63.000 | 0.315  | 40  | 106.000 | 2.270  | 69  | 195.400 | 0.000  | 98  | 784.800 | 0.001  |
| 12  | 64.000 | 0.087  | 41  | 106.900 | 0.164  | 70  | 207.400 | 0.001  | 99  | 799.400 | 0.001  |
| 13  | 65.000 | 0.405  | 42  | 109.600 | 0.001  | 71  | 208.100 | 0.001  | 100 | 827.900 | 0.001  |
| 14  | 66.000 | 0.459  | 43  | 119.500 | 0.001  | 72  | 208.900 | 0.001  | 101 | 829.400 | 0.001  |
| 15  | 67.100 | 0.050  | 44  | 120.400 | 0.006  | 73  | 225.800 | 0.001  | 102 | 873.800 | 0.001  |
| 16  | 71.900 | 0.022  | 45  | 121.200 | 0.200  | 74  | 226.500 | 0.001  | 103 | 875.600 | 0.001  |
| 17  | 73.000 | 0.332  | 46  | 121.900 | 28.479 | 75  | 227.800 | 0.001  | 104 | 894.400 | 0.001  |
| 18  | 73.900 | 1.616  | 47  | 122.900 | 2.340  | 76  | 232.000 | 0.001  | 105 | 903.400 | 0.001  |
| 19  | 75.000 | 0.834  | 48  | 124.000 | 0.147  | 77  | 244.700 | 0.001  | 106 | 904.800 | 0.001  |
| 20  | 76.000 | 0.958  | 49  | 124.800 | 0.020  | 78  | 251.800 | 0.012  | 107 | 905.700 | 0.001  |
| 21  | 77.000 | 19.031 | 50  | 126.900 | 0.065  | 79  | 406.800 | 0.000  | 108 | 939.800 | 0.001  |
| 22  | 78.000 | 1.635  | 51  | 128.100 | 0.024  | 80  | 438.500 | 0.001  | 109 | 941.000 | 0.001  |
| 23  | 79.000 | 0.346  | 52  | 131.400 | 0.001  | 81  | 518.700 | 0.000  | 110 | 951.400 | 0.001  |
| 24  | 80.000 | 0.048  | 53  | 133.200 | 0.001  | 82  | 519.800 | 0.001  | 111 | 956.600 | 0.001  |
| 25  | 81.000 | 0.004  | 54  | 134.200 | 0.001  | 83  | 525.400 | 0.001  | 112 | 958.400 | 0.001  |
| 26  | 84.100 | 0.002  | 55  | 135.300 | 0.001  | 84  | 547.400 | 0.001  | 113 | 995.800 | 0.001  |
| 27  | 85.000 | 0.046  | 56  | 139.000 | 0.007  | 85  | 548.800 | 0.001  | 114 | 996.700 | 0.001  |
| 28  | 87.700 | 0.003  | 57  | 151.900 | 0.001  | 86  | 574.200 | 0.000  |     |         |        |
| 29  | 89.800 | 0.022  | 58  | 152.700 | 0.001  | 87  | 585.400 | 0.001  |     |         |        |

| Formula C H O FW 212.2439 |               |                 |               |             |                    |         |  |  |  |  |  |
|---------------------------|---------------|-----------------|---------------|-------------|--------------------|---------|--|--|--|--|--|
| Count                     | 135           | Data Type       | Centroid      | Date        | 28 Mar 19 08:11 pm |         |  |  |  |  |  |
| File Name                 | BEATRIZ1_3-28 | -2019_BRUTO_ANI | SOL_CO(ACAC)2 | _1_Centroid |                    |         |  |  |  |  |  |
| Inlet Model               | GC            | Mass Spec Model | Varian Saturn | Plot Type   | Stick              |         |  |  |  |  |  |
| Retention Time            | 16.385        | Scan            | 673           | TIC         | 534.22             |         |  |  |  |  |  |
| Total Signal              | 6514759       |                 |               |             |                    |         |  |  |  |  |  |
|                           |               |                 |               |             |                    | $\circ$ |  |  |  |  |  |

## Anisol com Co(acac)2

BEATRIZ1\_3-28-2019\_BRUTO\_ANISOL\_CO(ACAC)2\_1\_tratado\_CENTIROTp.esp



Figura 73 – Espectro de Massas; Reação Anisol com Co(acac)<sub>2</sub>; T.R.= 16.4; o-metoxibenzofenona

P

CH<sub>3</sub>

| No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|
| 1   | 49.900  | 0.567  | 69  | 142.200 | 0.015  |
| 2   | 50.900  | 1.302  | 70  | 143.100 | 0.007  |
| 3   | 51,900  | 0.151  | 71  | 143.800 | 0.002  |
| 4   | 52,900  | 0.026  | 72  | 144,600 | 0.002  |
| 5   | 53 900  | 0.031  | 73  | 150 000 | 0 184  |
| 6   | 54 800  | 0.024  | 74  | 151 000 | 0.340  |
| 7   | 56 300  | 0.024  | 75  | 152 100 | 0.040  |
| 8   | 57.400  | 0.002  | 76  | 153,000 | 0.515  |
| 0   | 61,000  | 0.010  | 70  | 154 100 | 0.020  |
| 10  | 62,000  | 0.024  | 70  | 155 100 | 0.100  |
| 10  | 62.000  | 0.157  | 70  | 155.100 | 0.116  |
| 11  | 63.000  | 0.613  | 79  | 155.800 | 0.001  |
| 12  | 63.900  | 0.383  | 80  | 157.100 | 0.005  |
| 13  | 64.900  | 0.030  | 81  | 164.000 | 0.014  |
| 14  | 69.500  | 0.053  | 82  | 165.000 | 1.646  |
| 15  | 70.400  | 0.021  | 83  | 166.000 | 0.463  |
| 16  | 74.000  | 0.180  | 84  | 167.000 | 3.279  |
| 17  | 75.000  | 0.262  | 85  | 168.000 | 0.895  |
| 18  | 76.000  | 0.426  | 86  | 169.000 | 0.654  |
| 19  | 77.000  | 8.380  | 87  | 170.100 | 0.052  |
| 20  | 78.000  | 0.685  | 88  | 171.000 | 0.061  |
| 21  | 79.000  | 1.634  | 89  | 177.000 | 0.126  |
| 22  | 80.000  | 0.123  | 90  | 178.000 | 0.012  |
| 23  | 82.000  | 0.003  | 91  | 179.000 | 0.000  |
| 24  | 83.100  | 0.028  | 92  | 180.000 | 0.080  |
| 25  | 84.000  | 0.010  | 93  | 181.100 | 1.591  |
| 26  | 84.900  | 0.043  | 94  | 182.000 | 0.177  |
| 27  | 85,900  | 0.020  | 95  | 183.000 | 0.445  |
| 28  | 86,900  | 0.051  | 96  | 184 100 | 0 196  |
| 29  | 88,000  | 0.002  | 97  | 186,300 | 0.002  |
| 30  | 89,000  | 0.002  | 98  | 193 100 | 0.507  |
| 31  | 89 900  | 0.136  | 99  | 194 000 | 6 992  |
| 32  | 91,000  | 0.760  | 100 | 195.000 | 7 459  |
| 33  | 92.000  | 2 229  | 100 | 195.000 | 1 695  |
| 34  | 92.000  | 0.140  | 107 | 196,000 | 1.035  |
| 25  | 95.000  | 0.140  | 102 | 108.000 | 4.143  |
| 30  | 95.000  | 0.009  | 103 | 198.000 | 0.540  |
| 30  | 99.000  | 0.007  | 104 | 199.000 | 0.055  |
| 37  | 100.900 | 0.001  | 105 | 208.900 | 0.011  |
| 38  | 102.000 | 0.013  | 106 | 210.100 | 0.034  |
| 39  | 103.900 | 0.017  | 107 | 211.000 | 2.022  |
| 40  | 105.000 | 3.976  | 108 | 211.900 | 8.161  |
| 41  | 106.000 | 0.347  | 109 | 212.900 | 1.228  |
| 42  | 107.000 | 0.660  | 110 | 214.000 | 0.145  |
| 43  | 108.000 | 0.098  | 111 | 221.600 | 0.001  |
| 44  | 110.000 | 0.002  | 112 | 227.500 | 0.083  |
| 45  | 111.000 | 0.024  | 113 | 229.600 | 0.024  |
| 46  | 113.100 | 0.085  | 114 | 237.100 | 0.000  |
| 47  | 115.100 | 0.520  | 115 | 249.200 | 0.001  |
| 48  | 116.100 | 0.015  | 116 | 271.200 | 0.001  |
| 49  | 118.100 | 0.073  | 117 | 421.300 | 0.000  |
| 50  | 119.000 | 0.062  | 118 | 423.000 | 0.004  |
| 51  | 120.000 | 0.374  | 119 | 557.800 | 0.002  |
| 52  | 121.000 | 6.757  | 120 | 583.300 | 0.002  |
| 53  | 122.000 | 0.478  | 121 | 585.500 | 0.001  |
| 54  | 123.100 | 0.033  | 122 | 674.600 | 0.000  |
| 55  | 124.300 | 0.001  | 123 | 737.900 | 0.000  |
| 56  | 125.000 | 0.022  | 124 | 756.800 | 0.002  |
| 57  | 126.100 | 0.158  | 125 | 757.900 | 0.001  |
| 58  | 127.000 | 0.002  | 126 | 758.800 | 0.001  |
| 59  | 129.100 | 0.043  | 127 | 824.400 | 0.000  |
| 60  | 133.000 | 0.376  | 128 | 846.400 | 0.002  |
| 61  | 134 100 | 0.834  | 129 | 862,900 | 0.003  |
| 62  | 135 100 | 18,719 | 130 | 868 600 | 0.001  |
| 63  | 136 000 | 1.350  | 131 | 892 300 | 0.001  |
| 64  | 137 000 | 0.128  | 132 | 894 300 | 0.007  |
| 65  | 138 100 | 0.000  | 132 | 924 600 | 0.002  |
| 66  | 130.100 | 0.000  | 133 | 940 300 | 0.000  |
| 67  | 140.000 | 0.471  | 125 | 971 600 | 0.001  |
| 60  | 140.000 | 0.007  | 135 | 571.000 | 0.001  |
|     |         | 11/151 |     |         |        |

Figura 74 – Espectro de Massas; Reação Anisol com Co(acac)<sub>2</sub>; T.R.= 16.4; o-metoxibenzofenona (continuação)

| Formula C H O  | FW 212.        | 2439            |               |            |                    |
|----------------|----------------|-----------------|---------------|------------|--------------------|
| Count          | 127            | Data Type       | Centroid      | Date       | 28 Mar 19 08:11 pm |
| File Name      | BEATRIZ1_3-28- | 2019_BRUTO_ANIS | SOL_CO(ACAC)2 | 1_Centroid |                    |
| Inlet Model    | GC             | Mass Spec Model | Varian Saturn | Plot Type  | Stick              |
| Retention Time | 18.017         | Scan            | 767           | TIC        | 265.43             |
| Total Signal   | 18671418       |                 |               |            |                    |
|                |                |                 |               |            |                    |

## Anisol com Co(acac)2

BEATRIZ1\_3-28-2019\_BRUTO\_ANISOL\_CO(ACAC)2\_1\_tratado\_CENTIROTP.esp



Figura 75 – Espectro de Massas; Reação Anisol com Co(acac)<sub>2</sub>; T.R.= 18.0; p-metoxibenzofenona

`О | СН<sub>3</sub>

| No. | m/z    | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|--------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.000 | 0.384  | 34  | 99.800  | 0.000  | 67  | 150.100 | 0.085  | 100 | 273.600 | 0.000  |
| 2   | 51.000 | 0.835  | 35  | 102.100 | 0.001  | 68  | 151.000 | 0.103  | 101 | 356.400 | 0.001  |
| 3   | 51.900 | 0.005  | 36  | 104.000 | 0.074  | 69  | 152.100 | 0.389  | 102 | 423.800 | 0.000  |
| 4   | 53.000 | 0.069  | 37  | 105.100 | 1.992  | 70  | 153.100 | 0.286  | 103 | 424.800 | 0.000  |
| 5   | 53.900 | 0.023  | 38  | 106.100 | 0.181  | 71  | 154.100 | 0.057  | 104 | 468.700 | 0.000  |
| 6   | 56.000 | 0.007  | 39  | 107.100 | 2.367  | 72  | 155.100 | 0.010  | 105 | 469.500 | 0.000  |
| 7   | 58.200 | 0.003  | 40  | 108.000 | 0.154  | 73  | 156.200 | 0.013  | 106 | 526.400 | 0.001  |
| 8   | 61.000 | 0.040  | 41  | 109.000 | 0.020  | 74  | 160.900 | 0.001  | 107 | 527.800 | 0.000  |
| 9   | 62.000 | 0.086  | 42  | 110.000 | 0.011  | 75  | 162.500 | 0.000  | 108 | 548.800 | 0.000  |
| 10  | 63.000 | 0.844  | 43  | 112.000 | 0.004  | 76  | 164.900 | 0.040  | 109 | 570.300 | 0.001  |
| 11  | 64.000 | 0.900  | 44  | 113.100 | 0.066  | 77  | 166.900 | 0.034  | 110 | 599.700 | 0.001  |
| 12  | 65.100 | 0.040  | 45  | 114.300 | 0.000  | 78  | 168.000 | 0.349  | 111 | 622.600 | 0.000  |
| 13  | 66.000 | 0.009  | 46  | 115.100 | 0.653  | 79  | 169.100 | 0.916  | 112 | 623.500 | 0.001  |
| 14  | 74.000 | 0.214  | 47  | 116.100 | 0.016  | 80  | 170.100 | 0.111  | 113 | 654.200 | 0.001  |
| 15  | 75.000 | 0.240  | 48  | 119.100 | 0.065  | 81  | 180.100 | 0.130  | 114 | 689.200 | 0.000  |
| 16  | 76.000 | 0.376  | 49  | 120.100 | 0.008  | 82  | 181.100 | 2.641  | 115 | 701.200 | 0.000  |
| 17  | 77.000 | 7.557  | 50  | 122.800 | 0.018  | 83  | 182.100 | 0.519  | 116 | 710.100 | 0.001  |
| 18  | 78.000 | 0.415  | 51  | 125.100 | 0.150  | 84  | 183.200 | 0.069  | 117 | 711.800 | 0.001  |
| 19  | 79.000 | 0.375  | 52  | 126.000 | 0.018  | 85  | 184.100 | 0.192  | 118 | 730.800 | 0.000  |
| 20  | 80.100 | 0.001  | 53  | 127.200 | 0.061  | 86  | 195.100 | 0.204  | 119 | 769.200 | 0.000  |
| 21  | 81.000 | 0.020  | 54  | 133.200 | 0.011  | 87  | 196.100 | 0.318  | 120 | 769.900 | 0.000  |
| 22  | 85.000 | 0.025  | 55  | 134.400 | 0.003  | 88  | 197.100 | 0.368  | 121 | 865.800 | 0.001  |
| 23  | 86.000 | 0.044  | 56  | 135.100 | 37.674 | 89  | 198.100 | 0.040  | 122 | 889.500 | 0.000  |
| 24  | 86.900 | 0.057  | 57  | 136.100 | 2.854  | 90  | 207.300 | 0.002  | 123 | 904.700 | 0.000  |
| 25  | 88.000 | 0.051  | 58  | 137.100 | 0.190  | 91  | 209.200 | 0.001  | 124 | 934.500 | 0.001  |
| 26  | 89.100 | 0.119  | 59  | 138.000 | 0.032  | 92  | 209.800 | 0.000  | 125 | 965.900 | 0.000  |
| 27  | 91.000 | 0.028  | 60  | 139.100 | 0.550  | 93  | 211.200 | 1.506  | 126 | 967.200 | 0.001  |
| 28  | 92.000 | 1.963  | 61  | 140.100 | 0.238  | 94  | 212.000 | 24.547 | 127 | 997.200 | 0.000  |
| 29  | 93.100 | 0.076  | 62  | 141.100 | 0.648  | 95  | 212.900 | 3.705  |     |         |        |
| 30  | 93.900 | 0.017  | 63  | 142.100 | 0.044  | 96  | 213.900 | 0.332  |     |         |        |
| 31  | 95.000 | 0.038  | 64  | 142.900 | 0.003  | 97  | 215.000 | 0.021  |     |         |        |
| 32  | 96.200 | 0.000  | 65  | 145.200 | 0.000  | 98  | 228.700 | 0.000  |     |         |        |
| 33  | 99.000 | 0.006  | 66  | 149.100 | 0.017  | 99  | 238.400 | 0.000  |     |         |        |

Figura 76 – Espectro de Massas; Reação Anisol com Co(acac)<sub>2</sub>; T.R.= 18.0; p-metoxibenzofenona (continuação)

## **B.1.3** AuCl<sub>3</sub>



4 Jun 2019

Figura 77 – Cromatograma da reação Anisol com  $Au_2Cl_6$ 

| No. | Name                | Structure                               | Formula  | M       | Base Peak Mass | tR (min) |
|-----|---------------------|-----------------------------------------|----------|---------|----------------|----------|
| 3   | p-metóxibenzofenona | O C C C C C C C C C C C C C C C C C C C | C14H12O2 | 212.084 | 135.500        | 16.908   |



Figura 79 – Espectro de Massas; Reação Anisol com Au<sub>2</sub>Cl<sub>6</sub>; T.R.=7.5; Ácido benzóico

| No. | m/z    | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|--------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.100 | 1.993  | 32  | 84.400  | 0.000  | 63  | 138.900 | 0.000  | 94  | 243.300 | 0.001  |
| 2   | 51.100 | 3.453  | 33  | 87.500  | 0.000  | 64  | 141.900 | 0.001  | 95  | 245.200 | 0.000  |
| 3   | 52.100 | 0.452  | 34  | 89.000  | 0.001  | 65  | 143.900 | 0.001  | 96  | 251.900 | 0.000  |
| 4   | 53.100 | 0.241  | 35  | 90.300  | 0.004  | 66  | 149.300 | 0.000  | 97  | 252.900 | 0.001  |
| 5   | 54.200 | 0.033  | 36  | 91.200  | 0.010  | 67  | 151.100 | 0.000  | 98  | 402.900 | 0.001  |
| 6   | 55.100 | 0.044  | 37  | 92.100  | 0.012  | 68  | 152.000 | 0.005  | 99  | 404.000 | 0.000  |
| 7   | 56.000 | 0.000  | 38  | 93.200  | 0.067  | 69  | 152.800 | 0.001  | 100 | 411.700 | 0.000  |
| 8   | 57.100 | 0.000  | 39  | 94.200  | 0.472  | 70  | 163.700 | 0.000  | 101 | 451.000 | 0.000  |
| 9   | 60.100 | 0.016  | 40  | 95.200  | 0.142  | 71  | 172.000 | 0.001  | 102 | 468.000 | 0.000  |
| 10  | 61.200 | 0.218  | 41  | 96.300  | 0.004  | 72  | 174.400 | 0.000  | 103 | 478.600 | 0.001  |
| 11  | 62.200 | 0.125  | 42  | 97.000  | 0.000  | 73  | 175.300 | 0.001  | 104 | 479.600 | 0.001  |
| 12  | 63.200 | 0.192  | 43  | 99.100  | 0.000  | 74  | 178.800 | 0.001  | 105 | 538.300 | 0.000  |
| 13  | 64.200 | 0.050  | 44  | 99.800  | 0.000  | 75  | 179.900 | 0.006  | 106 | 589.500 | 0.000  |
| 14  | 65.200 | 0.455  | 45  | 101.900 | 0.001  | 76  | 180.900 | 0.001  | 107 | 610.000 | 0.000  |
| 15  | 66.200 | 0.469  | 46  | 102.600 | 0.001  | 77  | 183.000 | 0.001  | 108 | 621.700 | 0.000  |
| 16  | 67.200 | 0.024  | 47  | 103.700 | 0.012  | 78  | 191.000 | 0.001  | 109 | 623.200 | 0.000  |
| 17  | 68.200 | 0.001  | 48  | 105.300 | 36.542 | 79  | 197.800 | 0.001  | 110 | 641.600 | 0.001  |
| 18  | 69.300 | 0.000  | 49  | 106.300 | 2.345  | 80  | 203.900 | 0.001  | 111 | 652.400 | 0.000  |
| 19  | 70.500 | 0.001  | 50  | 107.300 | 0.153  | 81  | 205.000 | 0.001  | 112 | 654.200 | 0.000  |
| 20  | 71.400 | 0.000  | 51  | 109.500 | 0.000  | 82  | 210.200 | 0.001  | 113 | 655.100 | 0.000  |
| 21  | 72.100 | 0.006  | 52  | 116.500 | 0.000  | 83  | 211.800 | 0.001  | 114 | 733.500 | 0.001  |
| 22  | 73.300 | 0.261  | 53  | 119.900 | 0.000  | 84  | 213.300 | 0.000  | 115 | 762.200 | 0.000  |
| 23  | 74.300 | 1.219  | 54  | 122.000 | 30.665 | 85  | 219.800 | 0.001  | 116 | 772.500 | 0.001  |
| 24  | 75.300 | 0.521  | 55  | 123.000 | 2.100  | 86  | 225.000 | 0.000  | 117 | 775.400 | 0.000  |
| 25  | 76.300 | 0.862  | 56  | 124.000 | 0.207  | 87  | 225.900 | 0.000  | 118 | 792.300 | 0.000  |
| 26  | 77.100 | 15.090 | 57  | 126.400 | 0.000  | 88  | 227.000 | 0.000  | 119 | 886.700 | 0.001  |
| 27  | 78.100 | 1.268  | 58  | 128.000 | 0.001  | 89  | 227.800 | 0.000  | 120 | 907.700 | 0.000  |
| 28  | 79.100 | 0.181  | 59  | 129.500 | 0.000  | 90  | 233.800 | 0.001  | 121 | 986.200 | 0.001  |
| 29  | 80.100 | 0.022  | 60  | 136.200 | 0.000  | 91  | 235.800 | 0.001  |     |         |        |
| 30  | 81.100 | 0.005  | 61  | 136.900 | 0.000  | 92  | 236.900 | 0.000  |     |         |        |
| 31  | 82,200 | 0.000  | 62  | 137,900 | 0.000  | 93  | 242,100 | 0.000  |     |         |        |



Figura 81 – Espectro de Massas; Reação Anisol com Au<sub>2</sub>Cl<sub>6</sub>; T.R.= 15.4; o-metoxibenzofenona

| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.200  | 0.384  | 54  | 111.200 | 0.001  | 107 | 182.900 | 0.237  | 160 | 628.400 | 0.001  |
| 2   | 51.200  | 1.255  | 55  | 113.100 | 0.001  | 108 | 184.000 | 0.402  | 161 | 642.400 | 0.001  |
| 3   | 52.200  | 0.075  | 56  | 113.800 | 0.034  | 109 | 184.800 | 0.144  | 162 | 654.100 | 0.001  |
| 4   | 53.200  | 0.073  | 57  | 114.400 | 0.015  | 110 | 186.500 | 0.001  | 163 | 656.600 | 0.001  |
| 5   | 54.300  | 0.009  | 58  | 115.400 | 0.050  | 111 | 194.900 | 8.789  | 164 | 664.600 | 0.001  |
| 6   | 55.200  | 0.014  | 59  | 116.200 | 0.297  | 112 | 195.600 | 9.242  | 165 | 665.700 | 0.001  |
| 7   | 56.300  | 0.001  | 60  | 117.000 | 0.045  | 113 | 196.500 | 1.360  | 166 | 666.600 | 0.001  |
| 8   | 57.100  | 0.001  | 61  | 117.900 | 0.001  | 114 | 197.400 | 5.130  | 167 | 686.700 | 0.000  |
| 9   | 57.900  | 0.013  | 62  | 119.100 | 0.043  | 115 | 198.300 | 0.624  | 168 | 691.600 | 0.001  |
| 10  | 60.100  | 0.001  | 63  | 120.000 | 0.034  | 116 | 199.300 | 0.044  | 169 | 703.100 | 0.000  |
| 11  | 61.300  | 0.013  | 64  | 122.000 | 5.064  | 117 | 200.200 | 0.001  | 170 | 708.900 | 0.001  |
| 12  | 62.300  | 0.109  | 65  | 123.000 | 0.538  | 118 | 202.100 | 0.000  | 171 | 712.600 | 0.001  |
| 13  | 63.400  | 0.665  | 66  | 124.700 | 0.001  | 119 | 203.300 | 0.001  | 172 | 726.900 | 0.001  |
| 14  | 64.400  | 0.509  | 67  | 126.000 | 0.001  | 120 | 209.300 | 0.001  | 173 | 728.300 | 0.001  |
| 15  | 65.400  | 0.136  | 68  | 127.100 | 0.060  | 121 | 212.000 | 11.324 | 174 | 748.000 | 0.001  |
| 16  | 66.400  | 0.016  | 69  | 128.100 | 0.036  | 122 | 212.900 | 1.499  | 175 | 748.700 | 0.001  |
| 17  | 70.000  | 0.015  | 70  | 129.300 | 0.015  | 123 | 214.000 | 0.152  | 176 | 749.400 | 0.001  |
| 18  | 70.900  | 0.001  | 71  | 130.800 | 0.001  | 124 | 215.300 | 0.001  | 177 | 759.500 | 0.001  |
| 19  | 73.400  | 0.001  | 72  | 132.800 | 0.001  | 125 | 216.100 | 0.001  | 178 | 769.400 | 0.001  |
| 20  | 74.500  | 0.222  | 73  | 134.300 | 0.231  | 126 | 222.300 | 0.001  | 179 | 788.700 | 0.001  |
| 21  | 75.500  | 0.240  | 74  | 135.800 | 20.545 | 127 | 226.900 | 0.001  | 180 | 789.700 | 0.001  |
| 22  | 76.600  | 0.561  | 75  | 136.800 | 1.197  | 128 | 227.900 | 0.073  | 181 | 805.900 | 0.000  |
| 23  | 77.400  | 9.645  | 76  | 137.800 | 0.116  | 129 | 229.100 | 0.027  | 182 | 827.800 | 0.001  |
| 24  | 78.400  | 0.887  | 77  | 138.900 | 0.006  | 130 | 230.600 | 0.001  | 183 | 828.800 | 0.000  |
| 25  | 79.400  | 1.745  | 78  | 139.900 | 0.381  | 131 | 231.600 | 0.027  | 184 | 851.000 | 0.000  |
| 26  | 80.500  | 0.118  | 79  | 140.900 | 0.106  | 132 | 235.900 | 0.001  | 185 | 861.700 | 0.000  |
| 27  | 81.400  | 0.006  | 80  | 141.900 | 0.322  | 133 | 351.300 | 0.001  | 186 | 872.800 | 0.001  |
| 28  | 82.500  | 0.001  | 81  | 142.800 | 0.039  | 134 | 406.800 | 0.001  | 187 | 874.400 | 0.001  |
| 29  | 83.300  | 0.001  | 82  | 143.700 | 0.001  | 135 | 408.500 | 0.001  | 188 | 891.000 | 0.001  |
| 30  | 84.500  | 0.001  | 83  | 144.900 | 0.003  | 136 | 409.700 | 0.001  | 189 | 892.200 | 0.001  |
| 31  | 86.600  | 0.027  | 84  | 149.700 | 0.001  | 137 | 417.500 | 0.001  | 190 | 893.800 | 0.001  |
| 32  | 87.500  | 0.049  | 85  | 151.100 | 0.087  | 138 | 418.200 | 0.000  | 191 | 912.800 | 0.001  |
| 33  | 88.600  | 0.036  | 86  | 152.100 | 0.268  | 139 | 427.500 | 0.001  | 192 | 914.100 | 0.001  |
| 34  | 89.500  | 0.120  | 87  | 153.000 | 0.815  | 140 | 429.500 | 0.001  | 193 | 914.800 | 0.001  |
| 35  | 90.600  | 0.037  | 88  | 154.000 | 0.459  | 141 | 430.200 | 0.001  | 194 | 915.900 | 0.001  |
| 36  | 91.600  | 0.513  | 89  | 154.800 | 0.104  | 142 | 438.500 | 0.001  | 195 | 928.600 | 0.001  |
| 37  | 92.500  | 1.773  | 90  | 155.900 | 0.093  | 143 | 439.200 | 0.001  | 196 | 929.800 | 0.001  |
| 38  | 93.500  | 0.173  | 91  | 156.700 | 0.024  | 144 | 440.600 | 0.000  | 197 | 931.900 | 0.000  |
| 39  | 94.400  | 0.001  | 92  | 157.500 | 0.001  | 145 | 447.200 | 0.001  | 198 | 933.600 | 0.001  |
| 40  | 95.600  | 0.056  | 93  | 164.200 | 0.008  | 146 | 458.000 | 0.000  | 199 | 938.200 | 0.000  |
| 41  | 96.600  | 0.001  | 94  | 165.300 | 0.087  | 147 | 462.500 | 0.001  | 200 | 950.600 | 0.000  |
| 42  | 97.800  | 0.001  | 95  | 166.100 | 1.052  | 148 | 476.600 | 0.001  | 201 | 953.000 | 0.001  |
| 43  | 98.600  | 0.044  | 96  | 167.100 | 0.500  | 149 | 477.500 | 0.001  | 202 | 964.400 | 0.001  |
| 44  | 99.400  | 0.008  | 97  | 168.000 | 3.044  | 150 | 492.200 | 0.001  | 203 | 966.000 | 0.001  |
| 45  | 101.100 | 0.001  | 98  | 168.800 | 0.710  | 151 | 493.800 | 0.001  | 204 | 966.800 | 0.001  |
| 46  | 101.800 | 0.001  | 99  | 169.900 | 0.594  | 152 | 524.400 | 0.001  | 205 | 981.400 | 0.001  |
| 47  | 102.800 | 0.035  | 100 | 170.800 | 0.074  | 153 | 561.700 | 0.001  | 206 | 983.400 | 0.001  |
| 48  | 104.600 | 0.021  | 101 | 1/2.000 | 0.008  | 154 | 562.700 | 0.000  | 207 | 985.100 | 0.000  |
| 49  | 105.900 | 2.322  | 102 | 177.000 | 0.001  | 155 | 574.300 | 0.001  |     |         |        |
| 50  | 107.000 | 0.254  | 103 | 178.000 | 0.080  | 156 | 577.400 | 0.001  |     |         |        |
| 51  | 108.000 | 0.522  | 104 | 178.800 | 0.033  | 157 | 599.400 | 0.001  |     |         |        |
| 52  | 109.000 | 0.062  | 105 | 180.700 | 0.052  | 158 | 614.600 | 0.001  |     |         |        |
| 53  | 110.200 | 0.001  | 106 | 182.000 | 0.799  | 159 | 627.300 | 0.001  |     |         |        |

Figura 82 – Espectro de Massas; Reação Anisol com Au<sub>2</sub>Cl<sub>6</sub>; T.R.= 15.4; o-metoxibenzofenona (continuação)



Figura 83 – Espectro de Massas; Reação Anisol com Au<sub>2</sub>Cl<sub>6</sub>; T.R.= 16.9; p-metoxibenzofenona

| No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|
| 1   | 50.200  | 0.328  | 69  | 152.600 | 0.426  |
| 2   | 51.200  | 0.877  | 70  | 153.600 | 0.245  |
| 3   | 52.300  | 0.033  | 71  | 154.800 | 0.018  |
| 4   | 53.300  | 0.053  | 72  | 155.800 | 0.021  |
| 5   | 54,300  | 0.001  | 73  | 163.600 | 0.001  |
| 6   | 58.000  | 0.001  | 74  | 165,700 | 0.008  |
| 7   | 62 400  | 0.098  | 75  | 167 800 | 0.013  |
| 8   | 63 400  | 0.787  | 76  | 168 700 | 0.250  |
| 9   | 64 400  | 0.721  | 77  | 169 700 | 0.787  |
| 10  | 65 400  | 0.068  | 78  | 170 700 | 0.097  |
| 11  | 66 400  | 0.000  | 79  | 179.900 | 0.001  |
| 12  | 70 100  | 0.014  | 80  | 180,800 | 0.086  |
| 12  | 70.100  | 0.010  | 81  | 181 700 | 2 281  |
| 14  | 71.000  | 0.001  | 92  | 182 700 | 0.209  |
| 14  | 73.500  | 0.000  | 83  | 183,800 | 0.000  |
| 10  | 74.000  | 0.152  | 03  | 184 700 | 0.030  |
| 17  | 75.000  | 0.107  | 04  | 195 900 | 0.007  |
| 17  | 76.600  | 0.394  | 65  | 165.600 | 0.001  |
| 10  | 77.500  | 7.257  | 00  | 195.900 | 0.134  |
| 19  | 78.500  | 0.379  | 87  | 196.700 | 0.115  |
| 20  | 79.600  | 0.346  | 88  | 197.900 | 0.158  |
| 21  | 80.600  | 0.012  | 89  | 210.900 | 0.015  |
| 22  | 81.700  | 0.001  | 90  | 212.000 | 28.947 |
| 23  | 85.200  | 0.001  | 91  | 212.800 | 3.174  |
| 24  | 86.600  | 0.020  | 92  | 214.000 | 0.282  |
| 25  | 87.600  | 0.035  | 93  | 214.900 | 0.001  |
| 26  | 88.500  | 0.029  | 94  | 225.600 | 0.001  |
| 27  | 89.700  | 0.091  | 95  | 228.000 | 0.001  |
| 28  | 90.600  | 0.001  | 96  | 246.900 | 0.001  |
| 29  | 91.800  | 0.056  | 97  | 261.700 | 0.000  |
| 30  | 92.700  | 1.707  | 98  | 288.500 | 0.001  |
| 31  | 93.600  | 0.107  | 99  | 290.000 | 0.007  |
| 32  | 94.700  | 0.014  | 100 | 291.300 | 0.001  |
| 33  | 95.800  | 0.031  | 101 | 308.700 | 0.001  |
| 34  | 96.700  | 0.001  | 102 | 310.300 | 0.001  |
| 35  | 98.800  | 0.020  | 103 | 318.800 | 0.001  |
| 36  | 99.800  | 0.001  | 104 | 329.800 | 0.000  |
| 37  | 101.000 | 0.001  | 105 | 338.400 | 0.001  |
| 38  | 101.800 | 0.001  | 106 | 362.400 | 0.000  |
| 39  | 102.700 | 0.007  | 107 | 391.300 | 0.001  |
| 40  | 103.800 | 0.001  | 108 | 392.300 | 0.001  |
| 41  | 105.000 | 0.052  | 109 | 401.000 | 0.001  |
| 42  | 105.800 | 1.313  | 110 | 415.200 | 0.001  |
| 43  | 106.900 | 0.116  | 111 | 424.500 | 0.001  |
| 44  | 107.800 | 1.471  | 112 | 426.200 | 0.001  |
| 45  | 108.800 | 0.145  | 113 | 446.700 | 0.001  |
| 46  | 109.700 | 0.001  | 114 | 573.900 | 0.001  |
| 47  | 110.800 | 0.008  | 115 | 574.600 | 0.001  |
| 48  | 113.900 | 0.049  | 116 | 576.100 | 0.001  |
| 49  | 115.900 | 0.315  | 117 | 593.500 | 0.001  |
| 50  | 116.900 | 0.054  | 118 | 595.400 | 0.001  |
| 51  | 119.900 | 0.022  | 119 | 629.700 | 0.001  |
| 52  | 121.000 | 0.001  | 120 | 681.600 | 0.001  |
| 53  | 121.700 | 0.001  | 121 | 693.300 | 0.000  |
| 54  | 126.100 | 0.039  | 122 | 731.000 | 0.001  |
| 55  | 127.400 | 0.011  | 123 | 750.700 | 0.001  |
| 56  | 128.100 | 0.007  | 124 | 752.300 | 0.001  |
| 57  | 129.300 | 0.001  | 125 | 783.300 | 0.001  |
| 58  | 135.500 | 40.629 | 126 | 784.700 | 0.000  |
| 59  | 136.500 | 2,496  | 127 | 820.800 | 0.000  |
| 60  | 137.500 | 0.210  | 128 | 874.600 | 0.001  |
| 61  | 138 600 | 0.025  | 129 | 924 300 | 0.001  |
| 62  | 139 600 | 0.569  | 130 | 950 500 | 0.001  |
| 63  | 140 600 | 0.218  | 131 | 967 800 | 0.001  |
| 64  | 141 600 | 0.622  | 132 | 969 600 | 0.001  |
| 65  | 142 600 | 0.067  | 133 | 971 300 | 0.001  |
| 66  | 149 600 | 0.006  | 134 | 986 600 | 0.001  |
| 67  | 150 700 | 0.058  | 135 | 996 100 | 0.001  |
| 68  | 151 600 | 0.000  | 100 | 555.100 | 0.001  |

Figura 84 – Espectro de Massas; Reação Anisol com Au<sub>2</sub>Cl<sub>6</sub>; T.R.= 16.9; p-metoxibenzofenona (continuação)

## **B.1.4** NbCl<sub>5</sub>



Figura 85 - Cromatograma da reação Anisol com NbCl<sub>5</sub>

| No. | Name                | Structure                                                                                   | Formula  | M       | Base Peak Mass | tR (min) |
|-----|---------------------|---------------------------------------------------------------------------------------------|----------|---------|----------------|----------|
| 3   | p-metoxibenzofenona | $\begin{array}{c} 0\\ 10\\ 15\\ 14\\ 13\\ 14\\ 13\\ 12\\ 12\\ 5\\ 6\\ 7\\ 7\\ 8\end{array}$ | C14H12O2 | 212.084 | 135.600        | 17.091   |



## Anisol com NbCl5

Figura 87 – Espectro de Massas; Reação Anisol com NbCl<sub>5</sub>; T.R.=7.7; Ácido benzóico

| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.000  | 2.446  | 47  | 129.800 | 0.001  | 93  | 504.700 | 0.001  | 139 | 724.900 | 0.001  |
| 2   | 50.900  | 4.176  | 48  | 130.800 | 0.001  | 94  | 524.000 | 0.001  | 140 | 733.900 | 0.001  |
| 3   | 51.900  | 0.583  | 49  | 135.000 | 0.001  | 95  | 525.200 | 0.001  | 141 | 735.700 | 0.001  |
| 4   | 52.900  | 0.258  | 50  | 145.900 | 0.001  | 96  | 531.300 | 0.001  | 142 | 744.600 | 0.001  |
| 5   | 53.900  | 0.054  | 51  | 154.900 | 0.001  | 97  | 540.800 | 0.001  | 143 | 747.100 | 0.001  |
| 6   | 54.900  | 0.116  | 52  | 156.200 | 0.001  | 98  | 542.300 | 0.001  | 144 | 749.800 | 0.001  |
| 7   | 55.900  | 0.014  | 53  | 162.800 | 0.001  | 99  | 545.900 | 0.001  | 145 | 768.100 | 0.001  |
| 8   | 57.000  | 0.006  | 54  | 163.900 | 0.001  | 100 | 550.400 | 0.001  | 146 | 770.800 | 0.001  |
| 9   | 59.000  | 0.001  | 55  | 166.100 | 0.001  | 101 | 551.400 | 0.001  | 147 | 776.500 | 0.001  |
| 10  | 59.900  | 0.023  | 56  | 176.000 | 0.001  | 102 | 561.900 | 0.001  | 148 | 790.800 | 0.001  |
| 11  | 61.000  | 0.216  | 57  | 207.000 | 0.001  | 103 | 562.600 | 0.001  | 149 | 792.100 | 0.001  |
| 12  | 62.000  | 0.132  | 58  | 208.200 | 0.001  | 104 | 567.100 | 0.001  | 150 | 800.300 | 0.001  |
| 13  | 63.000  | 0.134  | 59  | 241.300 | 0.001  | 105 | 573.000 | 0.001  | 151 | 802.100 | 0.001  |
| 14  | 64.000  | 0.023  | 60  | 243.800 | 0.001  | 106 | 577.400 | 0.001  | 152 | 809.100 | 0.001  |
| 15  | 65.000  | 0.385  | 61  | 250.800 | 0.001  | 107 | 578.300 | 0.001  | 153 | 823.200 | 0.001  |
| 16  | 66.000  | 0.309  | 62  | 251.900 | 0.001  | 108 | 590.600 | 0.001  | 154 | 825.300 | 0.001  |
| 17  | 67.000  | 0.014  | 63  | 252.800 | 0.001  | 109 | 600.700 | 0.001  | 155 | 845.500 | 0.001  |
| 18  | 69.000  | 0.014  | 64  | 257.500 | 0.001  | 110 | 617.000 | 0.001  | 156 | 849.900 | 0.001  |
| 19  | 70.100  | 0.001  | 65  | 259.900 | 0.001  | 111 | 619.300 | 0.001  | 157 | 851.000 | 0.001  |
| 20  | 71.200  | 0.001  | 66  | 261.900 | 0.001  | 112 | 620.900 | 0.001  | 158 | 858.700 | 0.001  |
| 21  | 73.000  | 0.141  | 67  | 273.200 | 0.001  | 113 | 621.600 | 0.001  | 159 | 859.900 | 0.001  |
| 22  | 74.000  | 0.787  | 68  | 277.500 | 0.001  | 114 | 622.700 | 0.001  | 160 | 861.100 | 0.001  |
| 23  | 75.000  | 0.346  | 69  | 279.100 | 0.001  | 115 | 623.400 | 0.001  | 161 | 872.000 | 0.001  |
| 24  | 76.000  | 0.468  | 70  | 280.900 | 0.001  | 116 | 624.000 | 0.001  | 162 | 874.300 | 0.001  |
| 25  | 77.000  | 8.101  | 71  | 291.100 | 0.001  | 117 | 639.500 | 0.001  | 163 | 875.000 | 0.001  |
| 26  | 77.900  | 0.645  | 72  | 299.100 | 0.001  | 118 | 640.900 | 0.001  | 164 | 877.100 | 0.001  |
| 27  | 79.000  | 0.083  | 73  | 323.000 | 0.001  | 119 | 642.000 | 0.001  | 165 | 880.600 | 0.001  |
| 28  | 80.100  | 0.001  | 74  | 325.100 | 0.001  | 120 | 644.700 | 0.001  | 166 | 895.400 | 0.001  |
| 29  | 81.000  | 0.001  | 75  | 355.900 | 0.001  | 121 | 645.400 | 0.001  | 167 | 896.300 | 0.001  |
| 30  | 81.900  | 0.001  | 76  | 362.200 | 0.001  | 122 | 650.200 | 0.001  | 168 | 897.000 | 0.001  |
| 31  | 90.900  | 0.001  | 77  | 364.100 | 0.001  | 123 | 660.800 | 0.001  | 169 | 904.100 | 0.001  |
| 32  | 92.100  | 0.001  | 78  | 382.800 | 0.001  | 124 | 666.300 | 0.001  | 170 | 906.100 | 0.001  |
| 33  | 92.900  | 0.014  | 79  | 399.900 | 0.001  | 125 | 676.900 | 0.001  | 171 | 922.000 | 0.001  |
| 34  | 93.900  | 0.078  | 80  | 405.800 | 0.001  | 126 | 677.800 | 0.001  | 172 | 938.300 | 0.001  |
| 35  | 95.000  | 0.021  | 81  | 407.900 | 0.001  | 127 | 681.100 | 0.001  | 173 | 939.100 | 0.001  |
| 36  | 103.400 | 0.001  | 82  | 419.800 | 0.001  | 128 | 682.600 | 0.001  | 174 | 942.000 | 0.001  |
| 37  | 105.300 | 39.699 | 83  | 421.900 | 0.001  | 129 | 687.600 | 0.001  | 175 | 943.700 | 0.001  |
| 38  | 106.200 | 2.370  | 84  | 425.900 | 0.001  | 130 | 697.400 | 0.001  | 176 | 968.600 | 0.001  |
| 39  | 107.300 | 0.139  | 85  | 426.800 | 0.001  | 131 | 698.300 | 0.001  | 177 | 978.100 | 0.001  |
| 40  | 108.500 | 0.001  | 86  | 440.700 | 0.001  | 132 | 699.400 | 0.001  | 178 | 980.200 | 0.001  |
| 41  | 119.300 | 0.001  | 87  | 442.900 | 0.001  | 133 | 701.300 | 0.001  | 179 | 982.200 | 0.001  |
| 42  | 120.700 | 0.001  | 88  | 446.800 | 0.001  | 134 | 704.600 | 0.001  | 180 | 984.400 | 0.001  |
| 43  | 122.000 | 35.507 | 89  | 452.200 | 0.001  | 135 | 708.300 | 0.001  | 181 | 985.900 | 0.001  |
| 44  | 122.900 | 2.352  | 90  | 466.900 | 0.001  | 136 | 720.000 | 0.001  | 182 | 990.300 | 0.001  |
| 45  | 123.900 | 0.225  | 91  | 468.200 | 0.001  | 137 | 720.700 | 0.001  |     |         |        |
| 46  | 124.800 | 0.001  | 92  | 477.700 | 0.001  | 138 | 723.100 | 0.001  |     |         |        |

Figura 88 – Espectro de Massas; Reação Anisol com NbCl<sub>5</sub>; T.R.=7.7; Ácido benzóico (continuação)



#### Anisol com NbCl5

Figura 89 - Espectro de Massas; Reação Anisol com NbCl<sub>5</sub>; T.R.= 15.4; o-metoxibenzofenona

| No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z      | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|----------|--------|
| 1   | 50.000  | 0.510  | 66  | 137.500 | 0.176  | 131 | 411.900 | 0.001  | 196 | 727.700  | 0.001  |
| 2   | 51.000  | 1.554  | 67  | 138.500 | 0.024  | 132 | 418.800 | 0.001  | 197 | 728.500  | 0.001  |
| 3   | 52.000  | 0.084  | 68  | 139.600 | 0.563  | 133 | 420.700 | 0.001  | 198 | 743.800  | 0.001  |
| 4   | 53.100  | 0.067  | 69  | 140.500 | 0.113  | 134 | 429.900 | 0.001  | 199 | 753.800  | 0.001  |
| 5   | 55.100  | 0.001  | 70  | 141.600 | 0.412  | 135 | 431.300 | 0.001  | 200 | 754.700  | 0.001  |
| 6   | 57.700  | 0.010  | 71  | 142.600 | 0.041  | 136 | 440.600 | 0.000  | 201 | 756.000  | 0.001  |
| 7   | 61.100  | 0.023  | 72  | 146.600 | 0.001  | 137 | 445.700 | 0.000  | 202 | 756.700  | 0.001  |
| 8   | 62.100  | 0.190  | 73  | 149.700 | 0.004  | 138 | 448.600 | 0.001  | 203 | 758.200  | 0.001  |
| 9   | 63.200  | 0.826  | 74  | 150.600 | 0.149  | 139 | 449.700 | 0.001  | 204 | 759.300  | 0.001  |
| 10  | 64.200  | 0.609  | 75  | 151.600 | 0.361  | 140 | 452.100 | 0.001  | 205 | 764.500  | 0.001  |
| 11  | 65.100  | 0.177  | 76  | 152.600 | 1.099  | 141 | 477.200 | 0.001  | 206 | 769.500  | 0.001  |
| 12  | 66.100  | 0.008  | 77  | 153.600 | 0.540  | 142 | 482.500 | 0.001  | 207 | 770.200  | 0.001  |
| 13  | 69.100  | 0.001  | 78  | 154.700 | 0.065  | 143 | 483.200 | 0.001  | 208 | 775.100  | 0.001  |
| 14  | 69.900  | 0.024  | 79  | 155.600 | 0.114  | 144 | 487.100 | 0.001  | 209 | 775.800  | 0.001  |
| 15  | 71.500  | 0.001  | 80  | 156.600 | 0.008  | 145 | 487.800 | 0.001  | 210 | 777.300  | 0.001  |
| 16  | 72.700  | 0.001  | 81  | 160.700 | 0.001  | 146 | 489.700 | 0.001  | 211 | 779.800  | 0.001  |
| 17  | 74.300  | 0.201  | 82  | 163.700 | 0.025  | 147 | 498.000 | 0.001  | 212 | 781.400  | 0.001  |
| 18  | 75.200  | 0.225  | 83  | 164.700 | 0.007  | 148 | 502.900 | 0.001  | 213 | 791.200  | 0.001  |
| 19  | 70.300  | 0.737  | 04  | 165.700 | 0.406  | 149 | 508.600 | 0.001  | 214 | 792.000  | 0.001  |
| 20  | 79.100  | 9.002  | 00  | 167,600 | 0.400  | 150 | 523.600 | 0.001  | 215 | 793.900  | 0.000  |
| 21  | 78.100  | 1.656  | 87  | 168 600 | 0.725  | 157 | 537.000 | 0.001  | 210 | 794.900  | 0.001  |
| 22  | 80.200  | 0.094  | 88  | 169 500 | 0.720  | 152 | 545 400 | 0.001  | 218 | 809.600  | 0.001  |
| 20  | 81 600  | 0.009  | 89  | 170 600 | 0.086  | 154 | 557 600 | 0.001  | 210 | 811 800  | 0.001  |
| 25  | 84 200  | 0.000  | 90  | 171.600 | 0.015  | 155 | 560,000 | 0.001  | 220 | 837,400  | 0.001  |
| 26  | 85,100  | 0.012  | 91  | 177.700 | 0.052  | 156 | 561,100 | 0.001  | 221 | 838,500  | 0.001  |
| 27  | 86.000  | 0.044  | 92  | 178,700 | 0.023  | 157 | 570,700 | 0.001  | 222 | 839,900  | 0.001  |
| 28  | 87.200  | 0.036  | 93  | 179.500 | 0.001  | 158 | 572.300 | 0.001  | 223 | 842.300  | 0.001  |
| 29  | 88.100  | 0.035  | 94  | 180.700 | 0.082  | 159 | 578.800 | 0.001  | 224 | 843.500  | 0.001  |
| 30  | 89.200  | 0.143  | 95  | 181.600 | 0.942  | 160 | 580.900 | 0.001  | 225 | 855.900  | 0.001  |
| 31  | 90.300  | 0.040  | 96  | 182.600 | 0.166  | 161 | 582.400 | 0.001  | 226 | 857.500  | 0.001  |
| 32  | 91.200  | 0.639  | 97  | 183.600 | 0.437  | 162 | 583.900 | 0.001  | 227 | 864.000  | 0.000  |
| 33  | 92.200  | 1.893  | 98  | 184.600 | 0.106  | 163 | 590.500 | 0.000  | 228 | 867.800  | 0.001  |
| 34  | 93.200  | 0.195  | 99  | 192.400 | 0.001  | 164 | 591.500 | 0.001  | 229 | 869.600  | 0.000  |
| 35  | 94.200  | 0.007  | 100 | 194.600 | 5.858  | 165 | 592.800 | 0.001  | 230 | 874.500  | 0.001  |
| 36  | 95.200  | 0.023  | 101 | 195.400 | 6.469  | 166 | 598.200 | 0.001  | 231 | 876.300  | 0.001  |
| 37  | 97.400  | 0.001  | 102 | 196.300 | 1.070  | 167 | 600.600 | 0.001  | 232 | 893.800  | 0.001  |
| 38  | 98.300  | 0.028  | 103 | 197.200 | 3.305  | 168 | 611.900 | 0.001  | 233 | 896.000  | 0.001  |
| 39  | 99.600  | 0.016  | 104 | 198.200 | 0.432  | 169 | 613.800 | 0.001  | 234 | 897.800  | 0.001  |
| 40  | 101.100 | 0.001  | 105 | 199.100 | 0.008  | 170 | 614.500 | 0.001  | 235 | 899.800  | 0.001  |
| 41  | 101.600 | 0.001  | 100 | 210.200 | 1,700  | 171 | 616.000 | 0.001  | 230 | 900.700  | 0.001  |
| 42  | 102.900 | 4 229  | 107 | 211.300 | 7 160  | 172 | 618 800 | 0.001  | 237 | 916 500  | 0.001  |
| 43  | 105.700 | 4.239  | 108 | 212.000 | 0.945  | 173 | 636 200 | 0.001  | 230 | 920,900  | 0.001  |
| 45  | 107,700 | 0.757  | 110 | 214 000 | 0.040  | 175 | 638,300 | 0.001  | 240 | 921 800  | 0.001  |
| 46  | 108,700 | 0.032  | 111 | 216.800 | 0.001  | 176 | 639,300 | 0.001  | 241 | 931.700  | 0.001  |
| 47  | 110.700 | 0.001  | 112 | 218.900 | 0.001  | 177 | 644.600 | 0.001  | 242 | 936.300  | 0.000  |
| 48  | 113.900 | 0.065  | 113 | 219.500 | 0.000  | 178 | 645.300 | 0.001  | 243 | 938.800  | 0.000  |
| 49  | 114.900 | 0.058  | 114 | 220.500 | 0.001  | 179 | 654.800 | 0.001  | 244 | 941.400  | 0.000  |
| 50  | 115.900 | 0.456  | 115 | 222.200 | 0.001  | 180 | 655.700 | 0.001  | 245 | 942.800  | 0.001  |
| 51  | 116.900 | 0.047  | 116 | 223.600 | 0.001  | 181 | 664.200 | 0.001  | 246 | 956.200  | 0.001  |
| 52  | 118.300 | 0.001  | 117 | 225.900 | 0.001  | 182 | 666.000 | 0.001  | 247 | 957.500  | 0.001  |
| 53  | 119.000 | 0.042  | 118 | 227.100 | 0.001  | 183 | 668.000 | 0.007  | 248 | 958.400  | 0.001  |
| 54  | 119.900 | 0.055  | 119 | 227.900 | 0.016  | 184 | 669.600 | 0.001  | 249 | 960.000  | 0.001  |
| 55  | 121.800 | 5.480  | 120 | 229.500 | 0.004  | 185 | 671.300 | 0.001  | 250 | 964.000  | 0.001  |
| 56  | 122.800 | 0.434  | 121 | 231.500 | 0.001  | 186 | 678.400 | 0.001  | 251 | 970.600  | 0.001  |
| 57  | 124.000 | 0.001  | 122 | 236.600 | 0.001  | 187 | 680.500 | 0.001  | 252 | 972.700  | 0.001  |
| 58  | 125.800 | 0.001  | 123 | 246.800 | 0.001  | 188 | 691.000 | 0.001  | 253 | 979.000  | 0.001  |
| 59  | 126.800 | 0.084  | 124 | 247.800 | 0.001  | 189 | 691.900 | 0.001  | 254 | 994.100  | 0.001  |
| 60  | 127.900 | 0.050  | 125 | 264.000 | 0.001  | 190 | 701.600 | 0.001  | 255 | 1000.000 | 0.001  |
| 60  | 120.000 | 0.010  | 120 | 284.900 | 0.001  | 101 | 712.100 | 0.001  |     |          |        |
| 62  | 134.000 | 0.001  | 127 | 338 100 | 0.000  | 102 | 717.000 | 0.001  |     |          |        |
| 64  | 135 500 | 25,891 | 120 | 373 800 | 0.000  | 194 | 725 200 | 0.000  |     |          |        |
| 65  | 136.500 | 1.856  | 130 | 385.500 | 0.001  | 195 | 726.700 | 0.001  |     |          |        |

Figura 90 – Espectro de Massas; Reação Anisol com NbCl<sub>5</sub>; T.R.= 15.4; o-metoxibenzofenona (continuação)



#### Anisol com NbCl5

Figura 91 - Espectro de Massas; Reação Anisol com NbCl<sub>5</sub>; T.R.= 17.1; p-metoxibenzofenona

| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.200  | 0.333  | 61  | 134.200 | 0.003  | 121 | 356.000 | 0.000  | 181 | 718.200 | 0.001  |
| 2   | 51.200  | 0.786  | 62  | 135.600 | 43.854 | 122 | 358.000 | 0.001  | 182 | 726.200 | 0.001  |
| 3   | 52.200  | 0.001  | 63  | 136.500 | 2.110  | 123 | 398.700 | 0.001  | 183 | 737.400 | 0.001  |
| 4   | 53.200  | 0.060  | 64  | 137.600 | 0.203  | 124 | 419.200 | 0.001  | 184 | 738.600 | 0.001  |
| 5   | 54.200  | 0.001  | 65  | 138.900 | 0.013  | 125 | 420.600 | 0.001  | 185 | 742.100 | 0.000  |
| 6   | 55.100  | 0.001  | 66  | 139.700 | 0.591  | 126 | 421.300 | 0.001  | 186 | 744.600 | 0.001  |
| 7   | 61.300  | 0.018  | 67  | 140.700 | 0.204  | 127 | 423.200 | 0.001  | 187 | 746.800 | 0.001  |
| 8   | 62.400  | 0.105  | 68  | 141.700 | 0.659  | 128 | 424.100 | 0.001  | 188 | 748.200 | 0.001  |
| 9   | 63.400  | 0.779  | 69  | 142.800 | 0.060  | 129 | 425.300 | 0.001  | 189 | 757.500 | 0.001  |
| 10  | 64.400  | 0.660  | 70  | 145.900 | 0.001  | 130 | 426.200 | 0.001  | 190 | 758.200 | 0.001  |
| 11  | 65.400  | 0.091  | 71  | 146.900 | 0.001  | 131 | 451.400 | 0.000  | 191 | 760.300 | 0.001  |
| 12  | 66.400  | 0.005  | 72  | 149.600 | 0.000  | 132 | 457.600 | 0.001  | 192 | 764.100 | 0.001  |
| 13  | 67.500  | 0.001  | 73  | 150.800 | 0.049  | 133 | 465.100 | 0.000  | 193 | 777.300 | 0.001  |
| 14  | 70.200  | 0.001  | 74  | 151.700 | 0.118  | 134 | 473.100 | 0.001  | 194 | 779.700 | 0.001  |
| 15  | 73.600  | 0.001  | 75  | 152.700 | 0.354  | 135 | 475.800 | 0.001  | 195 | 780.400 | 0.001  |
| 16  | 74.500  | 0.147  | 76  | 153.700 | 0.254  | 136 | 480.600 | 0.001  | 196 | 782.000 | 0.001  |
| 17  | 75.600  | 0.114  | 77  | 154.800 | 0.057  | 137 | 482.100 | 0.001  | 197 | 783.800 | 0.001  |
| 18  | 76.600  | 0.302  | 78  | 156.100 | 0.001  | 138 | 502.000 | 0.001  | 198 | 796.600 | 0.000  |
| 19  | 77.500  | 5.644  | 79  | 165.900 | 0.004  | 139 | 508.500 | 0.001  | 199 | 798.000 | 0.001  |
| 20  | 78.500  | 0.405  | 80  | 167.500 | 0.001  | 140 | 509.800 | 0.001  | 200 | 799.600 | 0.001  |
| 21  | 79.600  | 0.284  | 81  | 168.900 | 0.213  | 141 | 510.600 | 0.001  | 201 | 801.400 | 0.001  |
| 22  | 80.600  | 0.014  | 82  | 169.900 | 0.608  | 142 | 512.500 | 0.001  | 202 | 807.000 | 0.001  |
| 23  | 81.600  | 0.005  | 83  | 170.800 | 0.100  | 143 | 527.600 | 0.001  | 203 | 808.000 | 0.001  |
| 24  | 85.900  | 0.000  | 84  | 180.200 | 0.001  | 144 | 528.500 | 0.001  | 204 | 817.200 | 0.001  |
| 25  | 86.600  | 0.015  | 85  | 181.900 | 1.840  | 145 | 534.100 | 0.001  | 205 | 820.000 | 0.001  |
| 26  | 87.600  | 0.024  | 86  | 182.900 | 0.217  | 146 | 536.400 | 0.001  | 206 | 841.600 | 0.001  |
| 27  | 88.600  | 0.012  | 87  | 183.900 | 0.062  | 147 | 554.300 | 0.001  | 207 | 842.600 | 0.001  |
| 28  | 89.700  | 0.105  | 88  | 184.900 | 0.098  | 148 | 558.400 | 0.001  | 208 | 844.600 | 0.001  |
| 29  | 90.800  | 0.001  | 89  | 185.800 | 0.010  | 149 | 559.400 | 0.001  | 209 | 859.400 | 0.001  |
| 30  | 91.700  | 0.045  | 90  | 188.600 | 0.001  | 150 | 560.400 | 0.001  | 210 | 860.100 | 0.001  |
| 31  | 92.700  | 1.379  | 91  | 196.200 | 0.094  | 151 | 574.700 | 0.001  | 211 | 862.400 | 0.001  |
| 32  | 93.700  | 0.119  | 92  | 197.000 | 0.125  | 152 | 578.000 | 0.001  | 212 | 870.100 | 0.001  |
| 33  | 94.700  | 0.006  | 93  | 197.800 | 0.124  | 153 | 580.100 | 0.001  | 213 | 872.500 | 0.001  |
| 34  | 95.700  | 0.007  | 94  | 198.900 | 0.032  | 154 | 580.900 | 0.001  | 214 | 873.300 | 0.001  |
| 35  | 97.200  | 0.001  | 95  | 199.900 | 0.001  | 155 | 582.200 | 0.001  | 215 | 875.100 | 0.001  |
| 36  | 98.000  | 0.001  | 96  | 210.500 | 0.001  | 156 | 592.300 | 0.001  | 216 | 883.600 | 0.001  |
| 37  | 98.700  | 0.011  | 97  | 212.100 | 29.197 | 157 | 594.900 | 0.001  | 217 | 888.700 | 0.001  |
| 38  | 99.800  | 0.001  | 98  | 212.900 | 3.667  | 158 | 596.000 | 0.001  | 218 | 896.600 | 0.001  |
| 39  | 102.700 | 0.005  | 99  | 214.000 | 0.442  | 159 | 606.400 | 0.001  | 219 | 897.700 | 0.001  |
| 40  | 104.100 | 0.001  | 100 | 215.000 | 0.031  | 160 | 608.000 | 0.001  | 220 | 899.000 | 0.001  |
| 41  | 104.800 | 0.031  | 101 | 215.900 | 0.001  | 161 | 608.700 | 0.001  | 221 | 900.000 | 0.001  |
| 42  | 105.900 | 1.017  | 102 | 220.000 | 0.001  | 162 | 616.900 | 0.001  | 222 | 910.100 | 0.000  |
| 43  | 106.700 | 0.175  | 103 | 235.000 | 0.001  | 163 | 618.600 | 0.001  | 223 | 914.800 | 0.001  |
| 44  | 107.900 | 1.105  | 104 | 236.500 | 0.001  | 164 | 621.600 | 0.001  | 224 | 915.900 | 0.001  |
| 45  | 108.900 | 0.128  | 105 | 238.600 | 0.001  | 165 | 622.900 | 0.001  | 225 | 930.500 | 0.001  |
| 46  | 110.200 | 0.001  | 106 | 239.800 | 0.001  | 166 | 632.900 | 0.001  | 226 | 941.100 | 0.001  |
| 47  | 113.900 | 0.020  | 107 | 240.900 | 0.001  | 167 | 647.300 | 0.001  | 227 | 950.100 | 0.001  |
| 48  | 114.900 | 0.023  | 108 | 241.800 | 0.001  | 168 | 651.100 | 0.001  | 228 | 953.200 | 0.001  |
| 49  | 116.000 | 0.342  | 109 | 256.200 | 0.001  | 169 | 663.800 | 0.001  | 229 | 955.300 | 0.001  |
| 50  | 117.000 | 0.056  | 110 | 274.000 | 0.000  | 170 | 664.700 | 0.001  | 230 | 958.600 | 0.001  |
| 51  | 119.800 | 0.011  | 111 | 289.100 | 0.054  | 171 | 669.000 | 0.001  | 231 | 962.000 | 0.001  |
| 52  | 120.800 | 0.001  | 112 | 290.000 | 0.012  | 172 | 682.400 | 0.001  | 232 | 972.800 | 0.001  |
| 53  | 124.000 | 0.000  | 113 | 291.100 | 0.001  | 173 | 684.200 | 0.001  | 233 | 984.900 | 0.001  |
| 54  | 124.800 | 0.001  | 114 | 305.800 | 0.001  | 174 | 685.000 | 0.001  | 234 | 987.900 | 0.001  |
| 55  | 126.200 | 0.027  | 115 | 311.500 | 0.000  | 175 | 685.700 | 0.001  | 235 | 989.100 | 0.001  |
| 56  | 127.000 | 0.025  | 116 | 318.900 | 0.005  | 176 | 700.300 | 0.001  | 236 | 992.800 | 0.001  |
| 57  | 127.900 | 0.001  | 117 | 331.900 | 0.001  | 177 | 701.000 | 0.001  | 237 | 994.000 | 0.001  |
| 58  | 128.900 | 0.001  | 118 | 339.300 | 0.001  | 178 | 701.900 | 0.001  |     |         |        |
| 59  | 130.400 | 0.001  | 119 | 351.700 | 0.001  | 179 | 702.800 | 0.001  |     |         |        |
| 60  | 131.200 | 0.001  | 120 | 354.700 | 0.001  | 180 | 715.600 | 0.001  |     |         |        |

Figura 92 – Espectro de Massas; Reação Anisol com NbCl<sub>5</sub>; T.R.= 17.1; p-metoxibenzofenona (continuação)

## **B.1.5** $K_3[Cr(C_2O_4)_3]$



Figura 93 – Cromatograma da reação Anisol com  $K_3[Cr(C_2O_4)_3]$ 



## Anisol com K3[Cr(C2O4)3]

Figura 94 – Espectro de Massas; Reação Anisol com  $K_3[Cr(C_2O_4)_3]$ ; T.R.= 8.1; Ácido benzóico
| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.200  | 2.301  | 60  | 147.600 | 0.001  | 119 | 476.900 | 0.001  | 178 | 741.200 | 0.001  |
| 2   | 51.200  | 3.796  | 61  | 149.100 | 0.001  | 120 | 480.400 | 0.001  | 179 | 751.200 | 0.001  |
| 3   | 52.200  | 0.489  | 62  | 150,100 | 0.001  | 121 | 484,700 | 0.001  | 180 | 756.000 | 0.001  |
| 4   | 53,200  | 0.241  | 63  | 154,900 | 0.001  | 122 | 499.800 | 0.001  | 181 | 770.600 | 0.001  |
| 5   | 54.200  | 0.035  | 64  | 160,600 | 0.001  | 123 | 508,400 | 0.001  | 182 | 772,100 | 0.001  |
| 6   | 55,300  | 0.041  | 65  | 166.300 | 0.001  | 124 | 509 100 | 0.001  | 183 | 777 300 | 0.001  |
| 7   | 57 300  | 0.000  | 66  | 179.000 | 0.001  | 124 | 510,000 | 0.001  | 184 | 797 600 | 0.001  |
| 0   | 50,100  | 0.000  | 67  | 195 500 | 0.010  | 120 | 511 100 | 0.001  | 104 | 709 600 | 0.001  |
| 0   | 59.100  | 0.001  | 60  | 101.000 | 0.001  | 120 | 511.000 | 0.001  | 100 | 798.000 | 0.001  |
| 9   | 60.400  | 0.064  | 00  | 194.900 | 0.001  | 127 | 511.000 | 0.001  | 100 | 800.500 | 0.000  |
| 10  | 61.400  | 0.154  | 69  | 195.900 | 0.001  | 128 | 516.300 | 0.001  | 187 | 802.100 | 0.001  |
| 11  | 62.400  | 0.185  | 70  | 209.600 | 0.000  | 129 | 524.700 | 0.001  | 188 | 804.100 | 0.001  |
| 12  | 63.400  | 0.241  | 71  | 211.100 | 0.001  | 130 | 527.500 | 0.001  | 189 | 808.900 | 0.001  |
| 13  | 64.400  | 0.056  | 72  | 212.200 | 0.001  | 131 | 529.200 | 0.001  | 190 | 811.200 | 0.001  |
| 14  | 65.400  | 0.499  | 73  | 213.200 | 0.001  | 132 | 529.900 | 0.001  | 191 | 813.000 | 0.001  |
| 15  | 66.500  | 0.421  | 74  | 215.300 | 0.001  | 133 | 532.300 | 0.001  | 192 | 814.400 | 0.001  |
| 16  | 67.400  | 0.015  | 75  | 216.700 | 0.001  | 134 | 546.900 | 0.001  | 193 | 818.700 | 0.001  |
| 17  | 68.400  | 0.001  | 76  | 232.000 | 0.001  | 135 | 552.400 | 0.001  | 194 | 819.800 | 0.001  |
| 18  | 69.400  | 0.001  | 77  | 232.900 | 0.001  | 136 | 556.800 | 0.000  | 195 | 824.700 | 0.001  |
| 19  | 71.400  | 0.001  | 78  | 234.300 | 0.000  | 137 | 573.400 | 0.001  | 196 | 833.900 | 0.001  |
| 20  | 72.300  | 0.006  | 79  | 236,100 | 0.001  | 138 | 583,700 | 0.001  | 197 | 835,700 | 0.001  |
| 21  | 73.500  | 0.271  | 80  | 237,200 | 0.001  | 139 | 591,900 | 0.001  | 198 | 838,800 | 0.001  |
| 22  | 74 500  | 1 257  | 81  | 249 700 | 0.001  | 140 | 592 600 | 0.001  | 199 | 839 800 | 0.001  |
| 23  | 75 500  | 0.593  | 82  | 251 900 | 0.001  | 141 | 594 800 | 0.001  | 200 | 845 700 | 0.001  |
| 20  | 76.500  | 0.000  | 92  | 262 200 | 0.001  | 142 | 509 600 | 0.001  | 200 | 840.500 | 0.001  |
| 24  | 70.300  | 10.725 | 0.0 | 202.200 | 0.001  | 142 | 604.000 | 0.001  | 201 | 852 200 | 0.001  |
| 25  | 77.300  | 19.735 | 04  | 264.600 | 0.001  | 143 | 604.900 | 0.001  | 202 | 855.300 | 0.001  |
| 26  | 78.300  | 1.543  | 85  | 269.700 | 0.001  | 144 | 609.900 | 0.001  | 203 | 855.800 | 0.001  |
| 27  | 79.300  | 0.247  | 86  | 274.600 | 0.001  | 145 | 610.700 | 0.001  | 204 | 866.200 | 0.001  |
| 28  | 80.300  | 0.019  | 87  | 293.000 | 0.001  | 146 | 612.900 | 0.001  | 205 | 875.300 | 0.001  |
| 29  | 81.300  | 0.005  | 88  | 294.600 | 0.001  | 147 | 614.500 | 0.001  | 206 | 876.800 | 0.001  |
| 30  | 82.200  | 0.004  | 89  | 296.300 | 0.001  | 148 | 615.300 | 0.001  | 207 | 881.200 | 0.001  |
| 31  | 84.200  | 0.001  | 90  | 300.800 | 0.001  | 149 | 624.700 | 0.001  | 208 | 881.900 | 0.001  |
| 32  | 85.400  | 0.005  | 91  | 306.200 | 0.001  | 150 | 626.000 | 0.001  | 209 | 892.600 | 0.001  |
| 33  | 86.600  | 0.001  | 92  | 326.800 | 0.001  | 151 | 631.300 | 0.000  | 210 | 895.100 | 0.001  |
| 34  | 87.300  | 0.001  | 93  | 337.400 | 0.001  | 152 | 639.800 | 0.001  | 211 | 897.100 | 0.001  |
| 35  | 88.600  | 0.001  | 94  | 352.600 | 0.001  | 153 | 641.300 | 0.001  | 212 | 898.400 | 0.001  |
| 36  | 89.400  | 0.025  | 95  | 353.900 | 0.001  | 154 | 660.800 | 0.000  | 213 | 903.200 | 0.001  |
| 37  | 90.500  | 0.001  | 96  | 363.300 | 0.001  | 155 | 667.200 | 0.001  | 214 | 908.000 | 0.000  |
| 38  | 91.500  | 0.007  | 97  | 364.500 | 0.001  | 156 | 675.400 | 0.001  | 215 | 912.000 | 0.001  |
| 39  | 92,400  | 0.013  | 98  | 379.000 | 0.001  | 157 | 676.500 | 0.001  | 216 | 914.200 | 0.001  |
| 40  | 93,500  | 0.069  | 99  | 379,900 | 0.001  | 158 | 678,800 | 0.001  | 217 | 924.000 | 0.001  |
| 41  | 94 400  | 0.601  | 100 | 400 000 | 0.000  | 159 | 688 800 | 0.001  | 218 | 928 900 | 0.001  |
| 42  | 95 400  | 0.131  | 101 | 410 100 | 0.001  | 160 | 690,800 | 0.001  | 219 | 934 500 | 0.001  |
| 13  | 96 500  | 0.001  | 107 | 412 300 | 0.001  | 161 | 691 800 | 0.001  | 220 | 946 300 | 0.001  |
| 43  | 102.000 | 0.001  | 102 | 416.400 | 0.001  | 162 | 692 500 | 0.001  | 220 | 947 500 | 0.001  |
| 44  | 105.000 | 21.067 | 103 | 417,200 | 0.001  | 162 | 602.000 | 0.001  | 221 | 947.300 | 0.001  |
| 45  | 105.300 | 31.907 | 104 | 417.200 | 0.001  | 103 | 093.200 | 0.001  | 222 | 950.700 | 0.001  |
| 40  | 106.300 | 1.960  | 105 | 421.600 | 0.001  | 104 | 694.000 | 0.001  | 223 | 955.100 | 0.001  |
| 47  | 107.300 | 0.108  | 106 | 430.300 | 0.000  | 165 | 697.300 | 0.001  | 224 | 971.100 | 0.001  |
| 48  | 108.500 | 0.001  | 107 | 431.200 | 0.001  | 166 | 698.200 | 0.001  | 225 | 976.000 | 0.001  |
| 49  | 111.900 | 0.001  | 108 | 432.300 | 0.001  | 167 | 699.100 | 0.001  | 226 | 981.000 | 0.000  |
| 50  | 112.800 | 0.001  | 109 | 433.200 | 0.001  | 168 | 713.000 | 0.001  | 227 | 982.000 | 0.001  |
| 51  | 119.700 | 0.001  | 110 | 437.400 | 0.001  | 169 | 715.500 | 0.001  | 228 | 984.500 | 0.001  |
| 52  | 122.000 | 29.645 | 111 | 447.700 | 0.001  | 170 | 719.800 | 0.001  | 229 | 994.200 | 0.001  |
| 53  | 122.900 | 1.893  | 112 | 449.100 | 0.001  | 171 | 725.200 | 0.001  | 230 | 995.300 | 0.001  |
| 54  | 123.900 | 0.207  | 113 | 450.500 | 0.001  | 172 | 730.500 | 0.000  | 231 | 997.600 | 0.001  |
| 55  | 125.000 | 0.004  | 114 | 451.200 | 0.001  | 173 | 733.000 | 0.001  |     |         |        |
| 56  | 134.900 | 0.001  | 115 | 452.300 | 0.001  | 174 | 734.600 | 0.001  |     |         |        |
| 57  | 137.900 | 0.001  | 116 | 453.000 | 0.001  | 175 | 735.800 | 0.001  |     |         |        |
| 58  | 145.100 | 0.001  | 117 | 468.500 | 0.001  | 176 | 739.800 | 0.001  |     |         |        |
| 59  | 145.900 | 0.001  | 118 | 469,500 | 0.001  | 177 | 740.500 | 0.001  |     |         |        |
|     |         |        |     |         |        |     |         |        |     |         |        |

Figura 95 – Espectro de Massas; Reação Anisol com  $K_3[Cr(C_2O_4)_3]$ ; T.R.= 8.1; Ácido benzóico (continuação)

| Count   |           | 238             | Data Type       | Centroid       | Date  |     | 02 Jul 19 | 06:49 am         |    |         |                 |    |
|---------|-----------|-----------------|-----------------|----------------|-------|-----|-----------|------------------|----|---------|-----------------|----|
| Inlet M | odel      | GC              | Mass Spec Mode  | / Varian Sa    | turn  |     |           | Plot Type        |    | Stick   |                 |    |
| Retent  | ion Time  | 16.562          | Scan            | 473            | TIC   |     | 148.27    | Total Signal     | 0  | 301584  |                 |    |
| 4 ANIS  | OL COM K3 | B(CR) 7-2-2     | 2019 1 Centroid |                |       |     |           | 105 <sub>7</sub> |    |         |                 |    |
|         |           | ()              |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 | 77_            |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 | ריי            |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
|         |           |                 |                 |                |       |     |           |                  |    |         |                 |    |
| 51      | ٦         |                 |                 |                |       |     |           |                  |    |         | 100             |    |
|         |           |                 |                 |                |       |     |           |                  |    |         | 1227            |    |
| . 1     |           | <sup>62</sup> 7 | <sup>66</sup> 7 | T              |       |     | 95 J      | <sup>104</sup> 7 |    | 1       | <sup>19</sup> 7 |    |
|         | 1         |                 |                 |                |       |     |           |                  |    |         |                 |    |
| 50      | ) 55      | 60              | 65 70           | 75 80          | ) 8   | 5 9 | 90 95     | 100 10           | 5  | 110 115 | 120 12          | 25 |
|         |           |                 |                 |                | -     | m/z |           |                  | -  |         |                 |    |
| No.     | m/z       | RI(%)           | DI              |                |       |     |           |                  |    |         |                 |    |
| 1       | 77.100    | 20.810          | 42327.219       |                |       |     |           |                  |    |         |                 |    |
| 2       | 105.100   | 100.000         | 203395.047      |                |       |     |           |                  |    |         |                 |    |
| No      | m/z       | TIC(%)          | No m            | /z TI          | C(%)  | No  | m/z       | TIC(%)           | No | m/z     | TIC(%)          |    |
| 1       | 50,000    | 1.221           | 17 73           | 300 0          | .026  | 33  | 105,900   | 3.893            | 49 | 149.000 | 0.008           |    |
| 2       | 51.000    | 3.827           | 18 74.          | 200 0          | .372  | 34  | 107.000   | 0.191            | 50 | 151.000 | 0.031           |    |
| 3       | 52.000    | 0.190           | 19 75.          | 300 0          | .223  | 35  | 108.000   | 0.001            | 51 | 152.000 | 0.072           |    |
| 4       | 53.000    | 0.064           | 20 76.          | 300 0          | .436  | 36  | 117.800   | 0.001            | 52 | 153.000 | 0.047           |    |
| 5       | 54.000    | 0.001           | 21 77.          | 100 14         | 1.035 | 37  | 119.100   | 0.011            | 53 | 154.100 | 0.045           |    |
| 6       | 54.900    | 0.001           | 22 78.          | 100 0          | .884  | 38  | 121.000   | 0.410            | 54 | 165.000 | 0.001           |    |
| 7       | 57.100    | 0.001           | 23 79.          | 100 0          | .070  | 39  | 122.000   | 2.453            | 55 | 166.000 | 0.001           |    |
| 8       | 58.200    | 0.000           | 24 81.          | 000 000        | .001  | 40  | 123.000   | 0.224            | 56 | 170.500 | 0.001           |    |
| 9       | 60.000    | 0.001           | 25 91.          | 000 000        | .001  | 41  | 124.000   | 0.022            | 57 | 172.600 | 0.001           |    |
| 10      | 61.100    | 0.024           | 26 93.          | 300 0          | .001  | 42  | 124.800   | 0.001            | 58 | 174.100 | 0.001           |    |
| 11      | 62.100    | 0.056           | 27 94.          | 200 0          | .029  | 43  | 126.000   | 0.001            | 59 | 181.000 | 0.604           |    |
| 12      | 63.100    | 0.020           | 28 95.          | 100 0          | .035  | 44  | 127.000   | 0.008            | 60 | 182.000 | 0.430           |    |
| 13      | 63.900    | 0.001           | 29 96.          |                | .001  | 45  | 128.000   | 0.001            | 61 | 183.100 | 0.028           |    |
| 14      | 65.200    | 0.014           | 30 102          | 000 0<br>500 0 | .001  | 46  | 138.900   | 0.001            | 62 | 190.200 | 0.001           |    |
| 15      | 67 200    | 0.029           | 31 103          | 100 0          | .052  | 4/  | 141.000   | 0.001            | 64 | 191.000 | 0.001           |    |
| 10      | 07.300    | 0.001           | 32 105          | 100 67         | .442  | 40  | 143.000   | 0.001            | 04 | 192.800 | 0.001           |    |

#### Anisol com K3[Cr(C2O4)3]

Figura 96 – Espectro de Massas; Reação Anisol com  $K_3[Cr(C_2O_4)_3]$ ; T.R.= 16.6; Desconhecido

| No  | m/7     | TIC(%) | No   | m/7     | TIC(%) | No  | m/7     | TIC(%) |
|-----|---------|--------|------|---------|--------|-----|---------|--------|
| NO. | 104 500 | 0.020  | 100. | F62 000 | 0.004  | 204 | 11//2   | 0.004  |
| 05  | 194.500 | 0.020  | 133  | 008.200 | 0.001  | 201 | 839.700 | 0.001  |
| 66  | 195.300 | 0.040  | 134  | 563.800 | 0.001  | 202 | 841.500 | 0.001  |
| 67  | 196.000 | 0.082  | 135  | 573.200 | 0.001  | 203 | 842.300 | 0.001  |
| 68  | 197.800 | 1.915  | 136  | 574.000 | 0.001  | 204 | 843.900 | 0.001  |
| 69  | 198.800 | 0.184  | 137  | 575.400 | 0.001  | 205 | 844.600 | 0.001  |
| 70  | 199.700 | 0.008  | 138  | 577.200 | 0.001  | 206 | 845.500 | 0.001  |
| 71  | 204.700 | 0.001  | 139  | 577.800 | 0.001  | 207 | 847.000 | 0.001  |
| 72  | 225,900 | 0.063  | 140  | 579.200 | 0.001  | 208 | 849.100 | 0.001  |
| 73  | 228 000 | 0.001  | 141  | 580,200 | 0.001  | 209 | 867 800 | 0.001  |
| 74  | 232 900 | 0.001  | 142  | 581 200 | 0.001  | 210 | 868 500 | 0.001  |
| 75  | 246 100 | 0.001  | 1/3  | 584 100 | 0.001  | 211 | 869.600 | 0.000  |
| 76  | 240.100 | 0.001  | 140  | 507.100 | 0.001  | 211 | 979.400 | 0.000  |
| 70  | 270.200 | 0.001  | 144  | 597.100 | 0.001  | 212 | 878.400 | 0.001  |
| 11  | 283.800 | 0.001  | 145  | 598.000 | 0.001  | 213 | 879.200 | 0.001  |
| 78  | 284.700 | 0.001  | 146  | 604.700 | 0.001  | 214 | 881.500 | 0.001  |
| 79  | 286.100 | 0.001  | 147  | 614.700 | 0.001  | 215 | 882.500 | 0.001  |
| 80  | 296.400 | 0.001  | 148  | 616.000 | 0.001  | 216 | 893.300 | 0.001  |
| 81  | 297.500 | 0.000  | 149  | 625.200 | 0.001  | 217 | 894.200 | 0.001  |
| 82  | 300.100 | 0.001  | 150  | 627.600 | 0.001  | 218 | 897.100 | 0.001  |
| 83  | 317,100 | 0.001  | 151  | 631,100 | 0.001  | 219 | 899,100 | 0.001  |
| 84  | 318 000 | 0.001  | 152  | 646 600 | 0.001  | 220 | 923 500 | 0.001  |
| 85  | 322 600 | 0.001  | 153  | 647.400 | 0.001  | 221 | 925 100 | 0.001  |
| 00  | 322.000 | 0.001  | 153  | 659 700 | 0.001  | 221 | 925.100 | 0.001  |
| 00  | 336.000 | 0.001  | 154  | 658.700 | 0.001  | 222 | 926.400 | 0.001  |
| 87  | 338.200 | 0.001  | 155  | 660.300 | 0.001  | 223 | 927.900 | 0.001  |
| 88  | 344.400 | 0.001  | 156  | 674.400 | 0.001  | 224 | 928.800 | 0.001  |
| 89  | 346.800 | 0.001  | 157  | 676.900 | 0.001  | 225 | 929.500 | 0.001  |
| 90  | 348.300 | 0.001  | 158  | 686.300 | 0.001  | 226 | 930.800 | 0.001  |
| 91  | 369.000 | 0.001  | 159  | 687.500 | 0.001  | 227 | 950.900 | 0.001  |
| 92  | 373.600 | 0.001  | 160  | 688.600 | 0.001  | 228 | 952.000 | 0.001  |
| 93  | 374,400 | 0.001  | 161  | 692 400 | 0.001  | 229 | 953,200 | 0.001  |
| 94  | 376 100 | 0.001  | 162  | 708 500 | 0.001  | 230 | 962 500 | 0.001  |
| 05  | 389 700 | 0.001  | 163  | 710 100 | 0.001  | 231 | 970 700 | 0.001  |
| 90  | 309.700 | 0.001  | 164  | 710.100 | 0.001  | 201 | 072,600 | 0.001  |
| 96  | 390.500 | 0.001  | 164  | 711.600 | 0.001  | 232 | 972.600 | 0.001  |
| 97  | 392.300 | 0.001  | 165  | 713.500 | 0.001  | 233 | 974.000 | 0.001  |
| 98  | 394.800 | 0.001  | 166  | 714.600 | 0.001  | 234 | 976.300 | 0.001  |
| 99  | 400.100 | 0.001  | 167  | 715.300 | 0.001  | 235 | 978.400 | 0.001  |
| 100 | 401.900 | 0.001  | 168  | 716.200 | 0.001  | 236 | 979.600 | 0.001  |
| 101 | 417.000 | 0.001  | 169  | 717.500 | 0.001  | 237 | 980.700 | 0.001  |
| 102 | 420.900 | 0.001  | 170  | 718.200 | 0.001  | 238 | 991.500 | 0.001  |
| 103 | 423.300 | 0.001  | 171  | 719.900 | 0.001  |     |         |        |
| 104 | 439,700 | 0.001  | 172  | 734.800 | 0.001  |     |         |        |
| 105 | 442 100 | 0.001  | 173  | 735 500 | 0.001  |     |         |        |
| 106 | 445.000 | 0.001  | 174  | 741 300 | 0.001  |     |         |        |
| 107 | 449.000 | 0.001  | 175  | 741.000 | 0.001  |     |         |        |
| 107 | 446.200 | 0.001  | 175  | 742.900 | 0.001  |     |         |        |
| 108 | 450.300 | 0.001  | 176  | 744.500 | 0.001  |     |         |        |
| 109 | 451.100 | 0.001  | 177  | 753.400 | 0.001  |     |         |        |
| 110 | 451.700 | 0.001  | 178  | 754.400 | 0.001  |     |         |        |
| 111 | 452.900 | 0.001  | 179  | 755.400 | 0.001  |     |         |        |
| 112 | 453.900 | 0.000  | 180  | 756.300 | 0.001  |     |         |        |
| 113 | 477.300 | 0.001  | 181  | 757.000 | 0.001  |     |         |        |
| 114 | 478.000 | 0.001  | 182  | 757.700 | 0.001  |     |         |        |
| 115 | 485.300 | 0.001  | 183  | 759.700 | 0.001  |     |         |        |
| 116 | 491.200 | 0.001  | 184  | 761.400 | 0.001  |     |         |        |
| 117 | 492 100 | 0.001  | 185  | 772 100 | 0.000  |     |         |        |
| 118 | 492 900 | 0.001  | 186  | 779 700 | 0.001  |     |         |        |
| 110 | 492.900 | 0.001  | 100  | 792 200 | 0.001  |     |         |        |
| 119 | 495.900 | 0.001  | 107  | 763.300 | 0.001  |     |         |        |
| 120 | 497.100 | 0.001  | 188  | 784.700 | 0.001  |     |         |        |
| 121 | 498.200 | 0.001  | 189  | 787.200 | 0.001  |     |         |        |
| 122 | 499.100 | 0.001  | 190  | 788.500 | 0.001  |     |         |        |
| 123 | 500.600 | 0.001  | 191  | 790.500 | 0.001  |     |         |        |
| 124 | 501.900 | 0.001  | 192  | 792.100 | 0.001  |     |         |        |
| 125 | 529.900 | 0.001  | 193  | 792.900 | 0.001  |     |         |        |
| 126 | 530.800 | 0.001  | 194  | 810.900 | 0.001  |     |         |        |
| 127 | 532.300 | 0.001  | 195  | 811.800 | 0.001  |     |         |        |
| 128 | 537 500 | 0.001  | 196  | 814 600 | 0.001  |     |         |        |
| 120 | 551 100 | 0.001  | 107  | 816 400 | 0.001  |     |         |        |
| 120 | 552 500 | 0.001  | 109  | 824 700 | 0.001  |     |         |        |
| 104 | 552.500 | 0.000  | 190  | 024.700 | 0.001  |     |         |        |
| 131 | 558.400 | 0.001  | 199  | 825.300 | 0.001  |     |         |        |
| 132 | 561.300 | 0.001  | 200  | 826.600 | 0.000  |     |         |        |

Figura 97 – Espectro de Massas; Reação Anisol com  $K_3[Cr(C_2O_4)_3]$ ; T.R.= 16.6; Desconhecido (continuação)

# **B.1.6** $Hg[Co(SCN)_4]$



Figura 98 – Cromatograma da reação Anisol com  $Hg[Co(SCN)_4]$ 

| No. | Name                | Structure                                                                                                                                               | Formula  | M       | Base Peak Mass | tR (min) |
|-----|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------------|----------|
| 3   | p-metoxibenzofenona | $\begin{array}{c} 0 \\ 15 \\ 16 \\ 11 \\ 14 \\ 13 \end{array} \begin{array}{c} 12 \\ 12 \\ 5 \\ 6 \end{array} \begin{array}{c} 7 \\ 7 \\ 7 \end{array}$ | C14H12O2 | 212.084 | 135.300        | 16.878   |



# Anisol com Hg[Co(SCN)4]

Figura 100 – Espectro de Massas; Reação Anisol com Hg[Co(SCN)<sub>4</sub>]; T.R.= 7.8; Ácido benzóico

| No. | m/z    | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|--------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.100 | 2.629  | 36  | 101.700 | 0.001  | 71  | 482.200 | 0.001  | 106 | 788.600 | 0.001  |
| 2   | 51.000 | 4.127  | 37  | 105.300 | 33.948 | 72  | 492.300 | 0.000  | 107 | 797.400 | 0.001  |
| 3   | 52.000 | 0.585  | 38  | 106.200 | 2.117  | 73  | 506.100 | 0.001  | 108 | 800.500 | 0.001  |
| 4   | 53.000 | 0.267  | 39  | 107.300 | 0.103  | 74  | 508.000 | 0.001  | 109 | 803.600 | 0.001  |
| 5   | 54.000 | 0.064  | 40  | 108.200 | 0.001  | 75  | 528.500 | 0.001  | 110 | 804.300 | 0.001  |
| 6   | 55.100 | 0.042  | 41  | 119.800 | 0.001  | 76  | 534.000 | 0.001  | 111 | 806.100 | 0.001  |
| 7   | 57.100 | 0.001  | 42  | 122.000 | 31.163 | 77  | 538.600 | 0.001  | 112 | 820.100 | 0.001  |
| 8   | 60.000 | 0.065  | 43  | 122.900 | 2.076  | 78  | 539.300 | 0.001  | 113 | 821.300 | 0.001  |
| 9   | 61.100 | 0.222  | 44  | 123.900 | 0.163  | 79  | 548.000 | 0.001  | 114 | 824.100 | 0.001  |
| 10  | 62.100 | 0.153  | 45  | 124.900 | 0.001  | 80  | 549.400 | 0.001  | 115 | 825.800 | 0.001  |
| 11  | 63.200 | 0.242  | 46  | 134.900 | 0.001  | 81  | 550.200 | 0.001  | 116 | 836.000 | 0.001  |
| 12  | 64.200 | 0.026  | 47  | 138.200 | 0.001  | 82  | 562.600 | 0.001  | 117 | 862.800 | 0.001  |
| 13  | 65.200 | 0.561  | 48  | 153.000 | 0.001  | 83  | 564.300 | 0.001  | 118 | 873.300 | 0.001  |
| 14  | 66.200 | 0.453  | 49  | 159.400 | 0.001  | 84  | 565.400 | 0.001  | 119 | 874.100 | 0.001  |
| 15  | 67.200 | 0.032  | 50  | 160.900 | 0.001  | 85  | 570.000 | 0.000  | 120 | 883.200 | 0.001  |
| 16  | 68.100 | 0.007  | 51  | 162.400 | 0.001  | 86  | 585.800 | 0.001  | 121 | 884.000 | 0.001  |
| 17  | 70.200 | 0.001  | 52  | 179.000 | 0.001  | 87  | 586.700 | 0.001  | 122 | 894.600 | 0.001  |
| 18  | 71.300 | 0.001  | 53  | 189.200 | 0.001  | 88  | 606.400 | 0.000  | 123 | 899.600 | 0.001  |
| 19  | 72.200 | 0.006  | 54  | 228.900 | 0.001  | 89  | 612.400 | 0.001  | 124 | 900.300 | 0.001  |
| 20  | 73.200 | 0.240  | 55  | 234.700 | 0.001  | 90  | 617.300 | 0.001  | 125 | 919.600 | 0.001  |
| 21  | 74.200 | 1.309  | 56  | 239.100 | 0.001  | 91  | 622.700 | 0.001  | 126 | 920.400 | 0.001  |
| 22  | 75.200 | 0.564  | 57  | 240.500 | 0.001  | 92  | 633.500 | 0.001  | 127 | 923.600 | 0.001  |
| 23  | 76.200 | 0.895  | 58  | 280.800 | 0.001  | 93  | 637.400 | 0.001  | 128 | 924.500 | 0.001  |
| 24  | 77.100 | 15.864 | 59  | 283.600 | 0.001  | 94  | 647.900 | 0.001  | 129 | 925.200 | 0.001  |
| 25  | 78.000 | 1.163  | 60  | 304.900 | 0.001  | 95  | 685.400 | 0.001  | 130 | 926.600 | 0.001  |
| 26  | 79.100 | 0.216  | 61  | 361.600 | 0.001  | 96  | 686.300 | 0.001  | 131 | 942.000 | 0.001  |
| 27  | 80.000 | 0.011  | 62  | 408.700 | 0.001  | 97  | 694.600 | 0.001  | 132 | 947.400 | 0.001  |
| 28  | 84.000 | 0.001  | 63  | 418.600 | 0.001  | 98  | 695.500 | 0.001  | 133 | 951.700 | 0.001  |
| 29  | 85.200 | 0.000  | 64  | 419.400 | 0.001  | 99  | 696.700 | 0.001  | 134 | 952.300 | 0.001  |
| 30  | 89.000 | 0.008  | 65  | 429.800 | 0.001  | 100 | 711.900 | 0.001  | 135 | 957.000 | 0.001  |
| 31  | 91.100 | 0.001  | 66  | 442.800 | 0.001  | 101 | 714.100 | 0.001  | 136 | 957.900 | 0.001  |
| 32  | 93.100 | 0.043  | 67  | 443.800 | 0.001  | 102 | 717.700 | 0.001  | 137 | 962.100 | 0.001  |
| 33  | 94.100 | 0.451  | 68  | 445.400 | 0.001  | 103 | 743.000 | 0.001  | 138 | 967.200 | 0.001  |
| 34  | 95.100 | 0.103  | 69  | 455.600 | 0.001  | 104 | 746.700 | 0.001  |     |         |        |
| 35  | 96.000 | 0.001  | 70  | 465.200 | 0.001  | 105 | 762.900 | 0.001  |     |         |        |

Figura 101 – Espectro de Massas; Reação Anisol com  $Hg[Co(SCN)_4]$ ; T.R.= 7.8; Ácido benzóico (continuação)



### Anisol com Hg[Co(SCN)4]

Figura 102 – Espectro de Massas; Reação Anisol com Hg[Co(SCN)<sub>4</sub>]; T.R.= 15.4; o-metoxibenzofenona

| No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z      | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|----------|--------|
| 1   | 49.900  | 0.484  | 51  | 119.700 | 0.071  | 101 | 193.600 | 0.382  | 151 | 594.500  | 0.001  |
| 2   | 50.900  | 1.656  | 52  | 120.700 | 0.494  | 102 | 194.400 | 5.904  | 152 | 595.400  | 0.002  |
| 3   | 51.900  | 0.099  | 53  | 121.600 | 7.191  | 103 | 195.200 | 6.231  | 153 | 613.800  | 0.001  |
| 4   | 53.000  | 0.039  | 54  | 122.600 | 0.626  | 104 | 196.200 | 0.979  | 154 | 615.100  | 0.001  |
| 5   | 54.000  | 0.002  | 55  | 123.800 | 0.001  | 105 | 197.100 | 2.949  | 155 | 616.000  | 0.001  |
| 6   | 55.100  | 0.001  | 56  | 125.700 | 0.010  | 106 | 198.100 | 0.421  | 156 | 618.400  | 0.002  |
| 7   | 57.500  | 0.003  | 57  | 126.800 | 0.098  | 107 | 199.400 | 0.001  | 157 | 639.900  | 0.001  |
| 8   | 60.900  | 0.040  | 58  | 127.800 | 0.058  | 108 | 207.200 | 0.001  | 158 | 641.700  | 0.002  |
| 9   | 61.900  | 0.099  | 59  | 128.800 | 0.043  | 109 | 209.300 | 0.002  | 159 | 658.500  | 0.002  |
| 10  | 63.000  | 0.554  | 60  | 129.700 | 0.012  | 110 | 210.100 | 0.030  | 160 | 660.300  | 0.002  |
| 11  | 63.900  | 0.415  | 61  | 130.800 | 0.001  | 111 | 211.200 | 1.610  | 161 | 674.500  | 0.001  |
| 12  | 65.000  | 0.128  | 62  | 133.200 | 0.010  | 112 | 212.000 | 6.075  | 162 | 681.900  | 0.001  |
| 13  | 66.000  | 0.012  | 63  | 133.800 | 0.274  | 113 | 213.000 | 0.819  | 163 | 686.200  | 0.002  |
| 14  | 66.700  | 0.001  | 64  | 135.400 | 30.683 | 114 | 214.000 | 0.087  | 164 | 687.600  | 0.001  |
| 15  | 69.500  | 0.012  | 65  | 136.400 | 2.146  | 115 | 227.500 | 0.002  | 165 | 709.300  | 0.001  |
| 16  | 70.600  | 0.001  | 66  | 137.300 | 0.191  | 116 | 228.200 | 0.002  | 166 | 741.000  | 0.002  |
| 17  | 71.900  | 0.002  | 67  | 138.300 | 0.002  | 117 | 231.800 | 0.001  | 167 | 746.900  | 0.001  |
| 18  | 73.000  | 0.002  | 68  | 139.400 | 0.735  | 118 | 237.300 | 0.001  | 168 | 761.800  | 0.002  |
| 19  | 74.000  | 0.096  | 69  | 140.400 | 0.148  | 119 | 349.700 | 0.001  | 169 | 764.700  | 0.002  |
| 20  | 75.000  | 0.128  | 70  | 141.400 | 0.461  | 120 | 365.700 | 0.001  | 170 | 794.700  | 0.001  |
| 21  | 76.000  | 0.382  | 71  | 142.400 | 0.021  | 121 | 390.900 | 0.001  | 171 | 796.500  | 0.002  |
| 22  | 77.000  | 4.848  | 72  | 144.400 | 0.001  | 122 | 391.800 | 0.001  | 172 | 817.100  | 0.002  |
| 23  | 77.900  | 0.353  | 73  | 149.200 | 0.002  | 123 | 401.100 | 0.002  | 173 | 832.900  | 0.002  |
| 24  | 78.900  | 0.633  | 74  | 150.400 | 0.181  | 124 | 403.100 | 0.001  | 174 | 840.900  | 0.001  |
| 25  | 80.000  | 0.029  | 75  | 151.400 | 0.461  | 125 | 404.300 | 0.001  | 175 | 841.900  | 0.001  |
| 26  | 86.000  | 0.001  | 76  | 152.400 | 1.461  | 126 | 405.100 | 0.001  | 176 | 843.200  | 0.001  |
| 27  | 87.900  | 0.001  | 77  | 153.400 | 0.599  | 127 | 439.300 | 0.001  | 177 | 844.300  | 0.001  |
| 28  | 88.900  | 0.020  | 78  | 154.400 | 0.113  | 128 | 441.000 | 0.002  | 178 | 846.500  | 0.001  |
| 29  | 91.000  | 0.147  | 79  | 155.400 | 0.104  | 129 | 457.100 | 0.001  | 179 | 854.000  | 0.002  |
| 30  | 91.900  | 0.457  | 80  | 156.500 | 0.001  | 130 | 461.000 | 0.001  | 180 | 874.600  | 0.001  |
| 31  | 92.900  | 0.019  | 81  | 163.300 | 0.027  | 131 | 462.000 | 0.001  | 181 | 893.300  | 0.001  |
| 32  | 95.000  | 0.009  | 82  | 164.600 | 0.044  | 132 | 467.600 | 0.001  | 182 | 894.100  | 0.001  |
| 33  | 96.000  | 0.001  | 83  | 165.500 | 1.357  | 133 | 477.500 | 0.001  | 183 | 895.200  | 0.001  |
| 34  | 98.300  | 0.001  | 84  | 166.500 | 0.479  | 134 | 480.000 | 0.001  | 184 | 896.100  | 0.001  |
| 35  | 100.500 | 0.002  | 85  | 167.400 | 3.384  | 135 | 480.800 | 0.001  | 185 | 910.200  | 0.001  |
| 36  | 101.600 | 0.002  | 86  | 168.400 | 0.803  | 136 | 481.700 | 0.001  | 186 | 910.900  | 0.002  |
| 37  | 102.600 | 0.010  | 87  | 169.300 | 0.733  | 137 | 489.600 | 0.001  | 187 | 911.600  | 0.001  |
| 38  | 103.800 | 0.001  | 88  | 170.300 | 0.122  | 138 | 491.400 | 0.001  | 188 | 916.100  | 0.001  |
| 39  | 104.600 | 0.051  | 89  | 171.300 | 0.010  | 139 | 492.300 | 0.001  | 189 | 917.600  | 0.001  |
| 40  | 105.600 | 6.070  | 90  | 173.400 | 0.002  | 140 | 493.700 | 0.001  | 190 | 942.300  | 0.002  |
| 41  | 106.600 | 0.486  | 91  | 177.400 | 0.098  | 141 | 514.000 | 0.001  | 191 | 946.200  | 0.002  |
| 42  | 107.600 | 1.043  | 92  | 178.300 | 0.011  | 142 | 515.800 | 0.001  | 192 | 947.300  | 0.001  |
| 43  | 108.600 | 0.103  | 93  | 179.400 | 0.002  | 143 | 556.400 | 0.001  | 193 | 948.000  | 0.001  |
| 44  | 110.600 | 0.001  | 94  | 180.400 | 0.082  | 144 | 558.700 | 0.001  | 194 | 961.800  | 0.001  |
| 45  | 111.600 | 0.021  | 95  | 181.400 | 1.141  | 145 | 573.500 | 0.002  | 195 | 1000.000 | 0.001  |
| 46  | 113.700 | 0.053  | 96  | 182.400 | 0.173  | 146 | 579.300 | 0.001  |     |          |        |
| 47  | 114.800 | 0.050  | 97  | 183.400 | 0.396  | 147 | 580.400 | 0.001  |     |          |        |
| 48  | 115.700 | 0.632  | 98  | 184.400 | 0.088  | 148 | 582.200 | 0.001  |     |          |        |
| 49  | 116.900 | 0.046  | 99  | 185.600 | 0.005  | 149 | 584.200 | 0.001  |     |          |        |
| 50  | 118.700 | 0.027  | 100 | 189.500 | 0.002  | 150 | 592.900 | 0.002  |     |          |        |

Figura 103 – Espectro de Massas; Reação Anisol com  $Hg[Co(SCN)_4]$ ; T.R.= 15.4; o-metoxibenzofenona (continuação)



## Anisol com Hg[Co(SCN)4]

Figura 104 – Espectro de Massas; Reação Anisol com Hg[Co(SCN)<sub>4</sub>]; T.R.= 16.9; p-metoxibenzofenona

| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.200  | 0.375  | 50  | 112.900 | 0.001  | 99  | 252.000 | 0.001  | 148 | 656.700 | 0.000  |
| 2   | 51.200  | 0.846  | 51  | 113.900 | 0.043  | 100 | 253.600 | 0.001  | 149 | 658.000 | 0.001  |
| 3   | 52.200  | 0.031  | 52  | 114.900 | 0.021  | 101 | 258.800 | 0.001  | 150 | 678.500 | 0.001  |
| 4   | 53.200  | 0.048  | 53  | 115.900 | 0.392  | 102 | 269.000 | 0.001  | 151 | 679.300 | 0.001  |
| 5   | 54.200  | 0.001  | 54  | 116.800 | 0.037  | 103 | 272.700 | 0.001  | 152 | 680.200 | 0.001  |
| 6   | 56.900  | 0.001  | 55  | 119.700 | 0.022  | 104 | 274.200 | 0.001  | 153 | 684.400 | 0.001  |
| 7   | 57.800  | 0.001  | 56  | 120.800 | 0.010  | 105 | 275.500 | 0.001  | 154 | 689.400 | 0.001  |
| 8   | 59.300  | 0.001  | 57  | 122.500 | 0.001  | 106 | 279.100 | 0.001  | 155 | 699.700 | 0.001  |
| 9   | 60.500  | 0.001  | 58  | 126.600 | 0.009  | 107 | 279.900 | 0.001  | 156 | 700.400 | 0.001  |
| 10  | 61.300  | 0.007  | 59  | 127.600 | 0.023  | 108 | 300.200 | 0.001  | 157 | 721.000 | 0.000  |
| 11  | 62.400  | 0.100  | 60  | 128.900 | 0.001  | 109 | 316.000 | 0.001  | 158 | 725.900 | 0.001  |
| 12  | 63.400  | 0.787  | 61  | 129.600 | 0.001  | 110 | 316.900 | 0.001  | 159 | 727.000 | 0.001  |
| 13  | 64.400  | 0.778  | 62  | 135.300 | 53.646 | 111 | 336.800 | 0.001  | 160 | 729.400 | 0.001  |
| 14  | 65.400  | 0.092  | 63  | 136.300 | 2.705  | 112 | 338.800 | 0.001  | 161 | 730.500 | 0.001  |
| 15  | 66.400  | 0.007  | 64  | 137.300 | 0.244  | 113 | 341.900 | 0.001  | 162 | 732.200 | 0.000  |
| 16  | 67.500  | 0.008  | 65  | 138.300 | 0.007  | 114 | 346.900 | 0.001  | 163 | 746.600 | 0.001  |
| 17  | 68.400  | 0.001  | 66  | 139.400 | 0.571  | 115 | 352.700 | 0.001  | 164 | 761.200 | 0.001  |
| 18  | 70.100  | 0.007  | 67  | 140.400 | 0.165  | 116 | 362.400 | 0.001  | 165 | 762.500 | 0.001  |
| 19  | 71.100  | 0.001  | 68  | 141.300 | 0.589  | 117 | 363.800 | 0.001  | 166 | 767.500 | 0.001  |
| 20  | 73.300  | 0.001  | 69  | 142.300 | 0.056  | 118 | 366.900 | 0.001  | 167 | 790.400 | 0.001  |
| 21  | 74.600  | 0.143  | 70  | 150.300 | 0.071  | 119 | 367.600 | 0.001  | 168 | 791.200 | 0.001  |
| 22  | 75.600  | 0.149  | 71  | 151.300 | 0.100  | 120 | 368.700 | 0.001  | 169 | 791.900 | 0.001  |
| 23  | 76.700  | 0.366  | 72  | 152.400 | 0.418  | 121 | 394.400 | 0.001  | 170 | 792.600 | 0.001  |
| 24  | 77.500  | 7.743  | 73  | 153.400 | 0.169  | 122 | 395.200 | 0.001  | 171 | 794.200 | 0.001  |
| 25  | 78.500  | 0.505  | 74  | 154.300 | 0.012  | 123 | 398.600 | 0.001  | 172 | 813.200 | 0.001  |
| 26  | 79.600  | 0.315  | 75  | 155.500 | 0.004  | 124 | 400.100 | 0.001  | 173 | 831.200 | 0.001  |
| 27  | 80.500  | 0.007  | 76  | 163.300 | 0.001  | 125 | 402.900 | 0.001  | 174 | 845.200 | 0.001  |
| 28  | 81.700  | 0.008  | 77  | 167.500 | 0.011  | 126 | 463.000 | 0.001  | 175 | 855.400 | 0.001  |
| 29  | 83.500  | 0.001  | 78  | 168.500 | 0.160  | 127 | 469.800 | 0.001  | 176 | 857.100 | 0.001  |
| 30  | 84.800  | 0.001  | 79  | 169.400 | 0.832  | 128 | 480.100 | 0.001  | 177 | 882.400 | 0.001  |
| 31  | 85.500  | 0.001  | 80  | 170.400 | 0.069  | 129 | 485.600 | 0.001  | 178 | 889.100 | 0.001  |
| 32  | 86.700  | 0.007  | 81  | 180.500 | 0.070  | 130 | 521.900 | 0.001  | 179 | 890.900 | 0.001  |
| 33  | 87.800  | 0.043  | 82  | 181.400 | 1.685  | 131 | 534.100 | 0.001  | 180 | 892.500 | 0.001  |
| 34  | 88.800  | 0.021  | 83  | 182.400 | 0.211  | 132 | 553.000 | 0.001  | 181 | 893.200 | 0.001  |
| 35  | 89.700  | 0.065  | 84  | 183.400 | 0.022  | 133 | 568.400 | 0.001  | 182 | 901.100 | 0.001  |
| 36  | 92.700  | 1.874  | 85  | 184.400 | 0.049  | 134 | 574.300 | 0.000  | 183 | 902.700 | 0.001  |
| 37  | 93.700  | 0.144  | 86  | 185.400 | 0.006  | 135 | 584.600 | 0.001  | 184 | 903.700 | 0.001  |
| 38  | 94.700  | 0.013  | 87  | 188.300 | 0.001  | 136 | 594.800 | 0.001  | 185 | 913.500 | 0.001  |
| 39  | 95.700  | 0.031  | 88  | 189.700 | 0.001  | 137 | 611.000 | 0.001  | 186 | 916.900 | 0.000  |
| 40  | 98.500  | 0.001  | 89  | 195.500 | 0.081  | 138 | 614.800 | 0.001  | 187 | 918.400 | 0.001  |
| 41  | 100.600 | 0.001  | 90  | 196.500 | 0.146  | 139 | 615.800 | 0.001  | 188 | 944.800 | 0.001  |
| 42  | 102.500 | 0.013  | 91  | 197.500 | 0.132  | 140 | 617.100 | 0.001  | 189 | 961.300 | 0.001  |
| 43  | 103.700 | 0.001  | 92  | 198.200 | 0.006  | 141 | 621.100 | 0.001  | 190 | 965.700 | 0.001  |
| 44  | 105.700 | 1.792  | 93  | 199.100 | 0.000  | 142 | 641.800 | 0.001  | 191 | 992.500 | 0.001  |
| 45  | 106.600 | 0.165  | 94  | 210.200 | 0.001  | 143 | 642.500 | 0.000  | 192 | 995.800 | 0.001  |
| 46  | 107.800 | 1.569  | 95  | 212.100 | 16.650 | 144 | 645.400 | 0.000  | 193 | 997.100 | 0.001  |
| 47  | 108.700 | 0.107  | 96  | 212.900 | 2.049  | 145 | 646.600 | 0.001  | 194 | 998.000 | 0.001  |
| 48  | 110.900 | 0.001  | 97  | 214.000 | 0.241  | 146 | 652.700 | 0.001  |     |         |        |
| 49  | 111.900 | 0.002  | 98  | 214.900 | 0.008  | 147 | 654.500 | 0.001  |     |         |        |

Figura 105 – Espectro de Massas; Reação Anisol com  $Hg[Co(SCN)_4]$ ; T.R.= 16.9; p-metoxibenzofenona (continuação)

# B.2 Isopropoxibenzeno

## **B.2.1** ZnO



Figura 106 - Cromatograma da reação Isopropoxibenzeno com ZnO

| No. | Name                    | Structure                                                            | Formula  | М       | Base Peak Mass | tR (min) |
|-----|-------------------------|----------------------------------------------------------------------|----------|---------|----------------|----------|
| 2   | Ácido benzoico          |                                                                      | C7H6O2   | 122.037 | 105.200        | 7.500    |
| 3   | Benzil                  | $\begin{array}{c} 4 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$ | C14H10O2 | 210.068 | 105.100        | 13.884   |
| 4   | p-isopropoxibenzofenona |                                                                      | C16H16O2 | 240.115 | 121.300        | 17.910   |
| 5   | o-isopropoxibenzofenona | 0<br>10<br>10<br>15<br>14<br>7<br>8<br>12                            | C16H18O2 | 242.131 | 225.300        | 19.153   |

| Formula CHO  | <b>FW</b> 13 | 6.1910         |            |             |               |                 |                 |
|--------------|--------------|----------------|------------|-------------|---------------|-----------------|-----------------|
| Count        | 62           | Data Type      | Centroid   | Date        | 01 Mar 19 01: | 25 pm           |                 |
| File Name    | 2_3-1-2019_1 | SOPZNO_BRUTO   | 1_Centroid | Inlet Model | GC            | Mass Spec Model | Varian Saturn   |
| Plot Type    | Stick        | Retention Time | 5.396      | Scan        | 54            | TIC             | 220.55          |
| Total Signal | 13664576     |                |            |             |               |                 |                 |
|              |              |                |            |             |               | C               | CH <sub>3</sub> |

### Isopropoxibenzeno com ZnO



Figura 108 – Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 5.4; Isopropoxibenzeno

| No. | m/z     | TIC(%) |
|-----|---------|--------|
| 1   | 50.100  | 0.306  |
| 2   | 51,100  | 0.977  |
| 3   | 52,100  | 0.069  |
| 4   | 53 100  | 0.060  |
| -   | 55 100  | 0.345  |
| 6   | 61 200  | 0.345  |
| 0   | 61.300  | 0.071  |
|     | 62.200  | 0.097  |
| 8   | 63.200  | 0.759  |
| 9   | 64.200  | 0.104  |
| 10  | 65.200  | 2.684  |
| 11  | 66.200  | 12.770 |
| 12  | 67.200  | 0.719  |
| 13  | 68.200  | 0.034  |
| 14  | 73.300  | 0.002  |
| 15  | 74.200  | 0.080  |
| 16  | 75.200  | 0.068  |
| 17  | 76,300  | 0.078  |
| 18  | 77 200  | 2,355  |
| 10  | 78 300  | 0.005  |
| 20  | 70.300  | 0.095  |
| 20  | 79.200  | 0.170  |
| 21  | 80.300  | 0.011  |
| 22  | 81.400  | 0.008  |
| 23  | 89.300  | 0.010  |
| 24  | 91.300  | 0.624  |
| 25  | 92.400  | 0.058  |
| 26  | 93.300  | 0.901  |
| 27  | 94.200  | 45.341 |
| 28  | 95.200  | 4.324  |
| 29  | 96.200  | 0.283  |
| 30  | 97,200  | 0.001  |
| 31  | 103 100 | 0.116  |
| 32  | 104.000 | 0.110  |
| 22  | 104.000 | 0.013  |
| 33  | 105.200 | 0.229  |
| 34  | 107.200 | 0.361  |
| 35  | 108.200 | 0.020  |
| 36  | 115.300 | 0.069  |
| 37  | 117.200 | 0.124  |
| 38  | 119.300 | 0.003  |
| 39  | 121.200 | 0.603  |
| 40  | 122.200 | 0.036  |
| 41  | 127.200 | 0.019  |
| 42  | 131.300 | 0.053  |
| 43  | 133 200 | 0.028  |
| 44  | 134 100 | 0.055  |
| 45  | 136 100 | 21 769 |
| 40  | 127.000 | 21.700 |
| 40  | 137.000 | 2.323  |
| 4/  | 138.100 | 0.118  |
| 48  | 139.100 | 0.005  |
| 49  | 143.100 | 0.004  |
| 50  | 145.100 | 0.165  |
| 51  | 146.100 | 0.018  |
| 52  | 147.100 | 0.034  |
| 53  | 149.100 | 0.065  |
| 54  | 153.200 | 0.047  |
| 55  | 155,100 | 0.002  |
| 56  | 155 900 | 0.003  |
| 57  | 159 200 | 0.069  |
| 58  | 171 100 | 0.009  |
| 50  | 172.100 | 0.207  |
| 59  | 172.100 | 0.013  |
| 60  | 197.100 | 0.006  |
| 61  | 227.300 | 0.017  |
| 62  | 243.000 | 0.002  |

Figura 109 – Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 5.4; Isopropoxibenzeno(continuação)



### Isopropoxibenzeno com ZnO

Figura 110 - Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.=7.5; Ácido benzóico

| No. | m/z     | TIC(%) |
|-----|---------|--------|
| 1   | 50.100  | 2.625  |
| 2   | 51,100  | 4.524  |
| 3   | 52 100  | 0.588  |
| 4   | 53 100  | 0.263  |
| -+  | 54 100  | 0.203  |
| 5   | 54.100  | 0.050  |
| 6   | 55.100  | 0.142  |
| 7   | 57.100  | 0.030  |
| 8   | 60.000  | 0.018  |
| 9   | 61.100  | 0.547  |
| 10  | 62.200  | 0.128  |
| 11  | 63.100  | 0.244  |
| 12  | 64.200  | 0.054  |
| 13  | 65.100  | 0.463  |
| 14  | 66.200  | 0.564  |
| 15  | 67.200  | 0.052  |
| 16  | 68 300  | 0.002  |
| 17  | 69.300  | 0.007  |
| 17  | 09.300  | 0.007  |
| 18  | 70.100  | 0.016  |
| 19  | /1.200  | 0.001  |
| 20  | 73.100  | 0.313  |
| 21  | 74.200  | 1.721  |
| 22  | 75.200  | 0.845  |
| 23  | 76.200  | 1.060  |
| 24  | 77.100  | 20.244 |
| 25  | 78.100  | 1.447  |
| 26  | 79.200  | 0.274  |
| 27  | 80,100  | 0.036  |
| 28  | 81,000  | 0.041  |
| 29  | 83 200  | 0.001  |
| 20  | 85 100  | 0.001  |
| 24  | 96 100  | 0.000  |
| 31  | 80.100  | 0.000  |
| 32  | 88.100  | 0.000  |
| 33  | 89.100  | 0.015  |
| 34  | 90.200  | 0.010  |
| 35  | 91.200  | 0.031  |
| 36  | 92.100  | 0.026  |
| 37  | 93.200  | 0.149  |
| 38  | 94.200  | 0.672  |
| 39  | 95.200  | 0.265  |
| 40  | 97.300  | 0.001  |
| 41  | 99,200  | 0.005  |
| 42  | 100,900 | 0.015  |
| 43  | 103 400 | 0.001  |
| 40  | 104 300 | 0.240  |
| 44  | 105 200 | 30.000 |
| 40  | 105.200 | 30.900 |
| 46  | 106.100 | 2.307  |
| 47  | 107.100 | 0.124  |
| 48  | 109.100 | 0.005  |
| 49  | 110.200 | 0.012  |
| 50  | 120.200 | 0.001  |
| 51  | 121.300 | 0.199  |
| 52  | 122.100 | 26.385 |
| 53  | 123.100 | 1.991  |
| 54  | 124.100 | 0.158  |
| 55  | 125 100 | 0.001  |
| 56  | 130.000 | 0.003  |
| 57  | 133 400 | 0.003  |
| 50  | 125 200 | 0.007  |
| 58  | 135.200 | 0.016  |
| 59  | 136.000 | 0.001  |
| 60  | 149.000 | 0.033  |
| 61  | 150.000 | 0.014  |
| 62  | 179.100 | 0.025  |

Figura 111 – Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.=7.5; Ácido benzóico (continuação)



#### Isopropoxibenzeno com ZnO

Figura 112 – Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 13.9; Benzil

| No.                              | m/z                                                            | TIC(%)                                                      |
|----------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|
| 1                                | 50 100                                                         | 0.986                                                       |
| 2                                | 51 100                                                         | 3 776                                                       |
| 2                                | 51.100                                                         | 0.110                                                       |
| 3                                | 52.100                                                         | 0.119                                                       |
| 4                                | 53.200                                                         | 0.098                                                       |
| 5                                | 54.200                                                         | 0.005                                                       |
| 6                                | 61.200                                                         | 0.009                                                       |
| 7                                | 62.200                                                         | 0.132                                                       |
| 8                                | 63.200                                                         | 0.407                                                       |
| 9                                | 64.200                                                         | 0.142                                                       |
| 10                               | 65 300                                                         | 0.902                                                       |
| 11                               | 66 300                                                         | 0.252                                                       |
| 12                               | 67 200                                                         | 0.003                                                       |
| 12                               | 72.200                                                         | 0.003                                                       |
| 13                               | 73.300                                                         | 0.046                                                       |
| 14                               | 74.200                                                         | 0.410                                                       |
| 15                               | 75.300                                                         | 0.249                                                       |
| 16                               | 76.300                                                         | 0.504                                                       |
| 17                               | 77.200                                                         | 24.548                                                      |
| 18                               | 78.200                                                         | 1.547                                                       |
| 19                               | 79.300                                                         | 0.164                                                       |
| 20                               | 80,200                                                         | 0.003                                                       |
| 21                               | 85 300                                                         | 0.012                                                       |
| 20                               | 80.400                                                         | 0.012                                                       |
| 22                               | 09.400                                                         | 0.080                                                       |
| 23                               | 90.200                                                         | 0.001                                                       |
| 24                               | 91.300                                                         | 0.021                                                       |
| 25                               | 92.400                                                         | 0.006                                                       |
| 26                               | 93.400                                                         | 0.129                                                       |
| 27                               | 94.300                                                         | 0.195                                                       |
| 28                               | 95.300                                                         | 0.133                                                       |
| 29                               | 98,500                                                         | 0.003                                                       |
| 30                               | 102 400                                                        | 0.004                                                       |
| 24                               | 102.400                                                        | 0.004                                                       |
| 31                               | 104.300                                                        | 0.050                                                       |
| 32                               | 105.100                                                        | 58.685                                                      |
| 33                               | 106.000                                                        | 4.119                                                       |
| 34                               | 107.100                                                        | 0.240                                                       |
| 35                               | 108.000                                                        | 0.001                                                       |
| 36                               | 113.100                                                        | 0.012                                                       |
| 37                               | 114.000                                                        | 0.001                                                       |
| 38                               | 115 100                                                        | 0.300                                                       |
| 30                               | 116 200                                                        | 0.000                                                       |
| 39                               | 10.200                                                         | 0.023                                                       |
| 40                               | 121.100                                                        | 0.010                                                       |
| 41                               | 139.100                                                        | 0.028                                                       |
| 42                               | 140.100                                                        | 0.001                                                       |
| 43                               | 141.200                                                        | 0.204                                                       |
| 44                               | 142.100                                                        | 0.001                                                       |
| 45                               | 143.000                                                        | 0.001                                                       |
| 46                               | 151 900                                                        | 0.012                                                       |
| 47                               | 153 200                                                        | 0.001                                                       |
| 10                               | 168 100                                                        | 0.001                                                       |
| 40                               | 160,100                                                        | 0.049                                                       |
| 49                               | 169.200                                                        | 0.019                                                       |
| 50                               | 178.200                                                        | 0.002                                                       |
| 51                               | 180.900                                                        | 0.014                                                       |
| 52                               | 182.100                                                        | 0.001                                                       |
| 53                               | 191.500                                                        | 0.000                                                       |
| 54                               | 193.300                                                        | 0.003                                                       |
| 55                               | 195.100                                                        | 0.023                                                       |
| 56                               | 196 300                                                        | 0.039                                                       |
| 57                               | 130.000                                                        | 0.000                                                       |
| 57                               | 107 100                                                        | 0 170                                                       |
| 50                               | 197.100                                                        | 0.178                                                       |
| 58                               | 197.100<br>197.800                                             | 0.178                                                       |
| 58<br>59                         | 197.100<br>197.800<br>198.900                                  | 0.178<br>0.819<br>0.191                                     |
| 58<br>59<br>60                   | 197.100<br>197.800<br>198.900<br>200.000                       | 0.178<br>0.819<br>0.191<br>0.004                            |
| 58<br>59<br>60<br>61             | 197.100<br>197.800<br>198.900<br>200.000<br>202.800            | 0.178<br>0.819<br>0.191<br>0.004<br>0.003                   |
| 58<br>59<br>60<br>61<br>62       | 197.100<br>197.800<br>198.900<br>200.000<br>202.800<br>216.000 | 0.178<br>0.819<br>0.191<br>0.004<br>0.003<br>0.009          |
| 58<br>59<br>60<br>61<br>62<br>63 | 197.100<br>197.800<br>200.000<br>202.800<br>216.000<br>275.000 | 0.178<br>0.819<br>0.191<br>0.004<br>0.003<br>0.009<br>0.060 |

Figura 113 – Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 13.9; Benzil (continuação)



#### Isopropoxibenzeno com ZnO

Figura 114 - Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 19.2; o-isopropoxibenzofenona

| No. | m/z    | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|--------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.100 | 0.070  | 39  | 101.200 | 0.040  | 77  | 148.400 | 0.151  | 115 | 199.300 | 0.107  |
| 2   | 51.100 | 0.558  | 40  | 102.400 | 0.062  | 78  | 149.300 | 0.029  | 116 | 200.400 | 0.001  |
| 3   | 52.100 | 0.044  | 41  | 103.300 | 0.175  | 79  | 150.300 | 0.040  | 117 | 205.500 | 0.005  |
| 4   | 53.100 | 0.031  | 42  | 104.300 | 0.051  | 80  | 151.300 | 0.086  | 118 | 207.300 | 0.073  |
| 5   | 55.100 | 0.191  | 43  | 105.200 | 8.596  | 81  | 152.300 | 0.387  | 119 | 208.500 | 0.029  |
| 6   | 56.000 | 0.001  | 44  | 106.200 | 1.012  | 82  | 153.400 | 0.258  | 120 | 209.400 | 0.028  |
| 7   | 57.200 | 0.001  | 45  | 107.200 | 0.895  | 83  | 154.300 | 0.100  | 121 | 210.300 | 0.364  |
| 8   | 62.200 | 0.000  | 46  | 108.200 | 0.026  | 84  | 155.400 | 0.110  | 122 | 211.400 | 0.449  |
| 9   | 63.200 | 0.102  | 47  | 109.300 | 0.011  | 85  | 157.300 | 0.005  | 123 | 212.400 | 0.185  |
| 10  | 64.100 | 0.058  | 48  | 111.400 | 0.014  | 86  | 161.400 | 0.424  | 124 | 213.200 | 0.001  |
| 11  | 65.200 | 0.394  | 49  | 112.300 | 0.000  | 87  | 162.400 | 0.024  | 125 | 223.500 | 0.042  |
| 12  | 66.100 | 0.013  | 50  | 115.300 | 0.556  | 88  | 163.300 | 11.090 | 126 | 224.400 | 0.023  |
| 13  | 67.100 | 0.005  | 51  | 116.300 | 0.062  | 89  | 164.300 | 1.170  | 127 | 225.300 | 21.339 |
| 14  | 69.100 | 0.037  | 52  | 117.300 | 0.065  | 90  | 165.300 | 0.483  | 128 | 226.300 | 3.055  |
| 15  | 70.200 | 0.006  | 53  | 118.300 | 0.011  | 91  | 166.300 | 0.076  | 129 | 227.300 | 0.276  |
| 16  | 73.300 | 0.001  | 54  | 119.300 | 0.147  | 92  | 167.200 | 0.081  | 130 | 228.200 | 0.018  |
| 17  | 74.100 | 0.006  | 55  | 120.300 | 0.114  | 93  | 168.400 | 0.056  | 131 | 238.400 | 0.057  |
| 18  | 75.200 | 0.142  | 56  | 121.300 | 0.408  | 94  | 169.400 | 0.016  | 132 | 239.300 | 0.627  |
| 19  | 76.200 | 0.198  | 57  | 122.300 | 0.006  | 95  | 170.300 | 0.014  | 133 | 240.200 | 13.165 |
| 20  | 77.200 | 5.185  | 58  | 125.300 | 0.002  | 96  | 175.400 | 0.006  | 134 | 241.200 | 2.214  |
| 21  | 78.200 | 0.351  | 59  | 126.300 | 0.016  | 97  | 176.300 | 0.130  | 135 | 242.200 | 0.307  |
| 22  | 79.200 | 0.547  | 60  | 127.300 | 0.053  | 98  | 177.300 | 0.113  | 136 | 243.100 | 0.009  |
| 23  | 80.200 | 0.095  | 61  | 128.400 | 0.065  | 99  | 178.300 | 0.821  | 137 | 254.300 | 0.004  |
| 24  | 81.200 | 0.051  | 62  | 129.400 | 0.031  | 100 | 179.400 | 0.368  | 138 | 264.300 | 0.104  |
| 25  | 83.300 | 0.024  | 63  | 131.300 | 0.131  | 101 | 180.200 | 0.046  | 139 | 265.400 | 0.037  |
| 26  | 84.300 | 0.005  | 64  | 132.300 | 0.026  | 102 | 181.400 | 0.440  | 140 | 267.200 | 0.103  |
| 27  | 87.200 | 0.018  | 65  | 133.400 | 0.187  | 103 | 182.400 | 1.311  | 141 | 268.200 | 0.002  |
| 28  | 88.100 | 0.010  | 66  | 134.300 | 0.257  | 104 | 183.400 | 0.298  | 142 | 280.500 | 0.008  |
| 29  | 89.100 | 0.158  | 67  | 135.400 | 0.460  | 105 | 184.300 | 0.024  | 143 | 282.100 | 8.920  |
| 30  | 90.200 | 0.024  | 68  | 136.300 | 0.006  | 106 | 189.300 | 0.026  | 144 | 283.000 | 1.664  |
| 31  | 91.200 | 1.365  | 69  | 139.300 | 0.115  | 107 | 190.400 | 0.009  | 145 | 284.100 | 0.230  |
| 32  | 92.200 | 0.269  | 70  | 140.300 | 0.036  | 108 | 191.300 | 0.004  | 146 | 285.100 | 0.002  |
| 33  | 93.100 | 0.071  | 71  | 141.400 | 0.247  | 109 | 193.400 | 0.007  | 147 | 474.400 | 0.009  |
| 34  | 95.200 | 0.086  | 72  | 142.400 | 0.002  | 110 | 194.300 | 0.002  |     |         |        |
| 35  | 96.000 | 0.009  | 73  | 143.300 | 0.002  | 111 | 195.400 | 0.086  |     |         |        |
| 36  | 97.200 | 0.020  | 74  | 144.400 | 0.001  | 112 | 196.400 | 0.036  |     |         |        |
| 37  | 97.900 | 0.001  | 75  | 145.400 | 0.041  | 113 | 197.400 | 2.565  |     |         |        |
| 38  | 99.200 | 0.004  | 76  | 147.400 | 1.085  | 114 | 198.300 | 0.480  |     |         |        |

Figura 115 – Espectro de Massas; Reação Isopropoxibenzeno com *ZnO*; T.R.= 19.2; o-isopropoxibenzofenona (continuação)



#### Isopropoxibenzeno com ZnO

Figura 116 - Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 17.9; p-isopropoxibenzofenona

| No. | m/z    | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|--------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.100 | 0.258  | 24  | 92.200  | 0.506  | 47  | 126.200 | 0.040  | 70  | 181.300 | 1.972  |
| 2   | 51.100 | 0.705  | 25  | 93.200  | 1.526  | 48  | 127.200 | 0.023  | 71  | 182.300 | 0.313  |
| 3   | 52.100 | 0.044  | 26  | 94.200  | 0.070  | 49  | 137.200 | 0.002  | 72  | 183.400 | 0.042  |
| 4   | 53.100 | 0.036  | 27  | 95.200  | 0.039  | 50  | 139.300 | 0.367  | 73  | 196.400 | 0.003  |
| 5   | 54.000 | 0.001  | 28  | 98.200  | 0.003  | 51  | 140.300 | 0.142  | 74  | 197.400 | 5.426  |
| 6   | 55.000 | 0.001  | 29  | 99.400  | 0.003  | 52  | 141.300 | 1.110  | 75  | 198.100 | 18.358 |
| 7   | 62.200 | 0.083  | 30  | 101.200 | 0.001  | 53  | 142.300 | 0.168  | 76  | 199.100 | 2.255  |
| 8   | 63.100 | 0.332  | 31  | 102.300 | 0.036  | 54  | 143.200 | 0.014  | 77  | 200.100 | 0.178  |
| 9   | 64.200 | 0.145  | 32  | 103.300 | 0.021  | 55  | 150.300 | 0.039  | 78  | 201.200 | 0.007  |
| 10  | 65.200 | 1.552  | 33  | 104.200 | 0.037  | 56  | 151.300 | 0.088  | 79  | 209.400 | 0.003  |
| 11  | 66.200 | 0.050  | 34  | 105.300 | 3.573  | 57  | 152.300 | 0.492  | 80  | 211.200 | 0.003  |
| 12  | 71.000 | 0.009  | 35  | 106.300 | 0.223  | 58  | 153.300 | 0.113  | 81  | 212.300 | 0.004  |
| 13  | 74.100 | 0.025  | 36  | 107.300 | 0.004  | 59  | 154.400 | 0.001  | 82  | 225.200 | 0.304  |
| 14  | 75.200 | 0.131  | 37  | 111.300 | 0.019  | 60  | 155.200 | 0.002  | 83  | 226.100 | 0.038  |
| 15  | 76.200 | 0.359  | 38  | 113.300 | 0.029  | 61  | 161.300 | 0.019  | 84  | 238.500 | 0.014  |
| 16  | 77.200 | 4.062  | 39  | 114.400 | 0.008  | 62  | 163.300 | 0.041  | 85  | 240.100 | 13.645 |
| 17  | 78.200 | 0.271  | 40  | 115.400 | 1.258  | 63  | 166.200 | 0.005  | 86  | 241.000 | 2.811  |
| 18  | 79.200 | 0.042  | 41  | 116.400 | 0.126  | 64  | 168.300 | 0.140  | 87  | 242.100 | 0.241  |
| 19  | 84.300 | 0.008  | 42  | 119.400 | 0.012  | 65  | 169.300 | 0.399  | 88  | 243.100 | 0.001  |
| 20  | 87.200 | 0.018  | 43  | 120.400 | 0.504  | 66  | 170.300 | 0.388  |     |         |        |
| 21  | 88.200 | 0.019  | 44  | 121.300 | 31.526 | 67  | 171.200 | 0.059  |     |         |        |
| 22  | 89.300 | 0.127  | 45  | 122.200 | 2.306  | 68  | 179.300 | 0.080  |     |         |        |
| 23  | 91.200 | 0.126  | 46  | 123.200 | 0.188  | 69  | 180.300 | 0.228  |     |         |        |

Figura 117 – Espectro de Massas; Reação Isopropoxibenzeno com ZnO; T.R.= 17.9; p-isopropoxibenzofenona (continuação)

# **B.2.2** Co(acac)<sub>2</sub>



Figura 118 – Cromatograma da reação Isopropoxibenzeno com Co(acac)<sub>2</sub>

| No. | Name        | Structure                                                                      | Formula  | M       | Base Peak Mass | tR (min) |
|-----|-------------|--------------------------------------------------------------------------------|----------|---------|----------------|----------|
| 3   | Structure 1 | $\begin{array}{c} 0\\ 1,1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1$ | C16H16O2 | 240.115 | 121.200        | 17.829   |



#### Isopropoxibenzeno com Co(Acac)2

Figura 120 – Espectro de Massas; Reação Isopropoxibenzeno com Co(acac)<sub>2</sub>; T.R.= 7.4; Ácido benzóico

| No. | m/z     | TIC(%) |
|-----|---------|--------|
| 1   | 50 100  | 2 407  |
| 2   | 51 100  | 4 486  |
| 2   | 52,100  | 4.400  |
| 3   | 53 100  | 0.004  |
| 4   | 53.100  | 0.322  |
| 5   | 54.100  | 0.041  |
| 6   | 55.100  | 0.059  |
| 7   | 56.100  | 0.002  |
| 8   | 57.200  | 0.016  |
| 9   | 59.200  | 0.004  |
| 10  | 60.100  | 0.005  |
| 11  | 61.100  | 0.563  |
| 12  | 62.100  | 0.183  |
| 13  | 63.100  | 0.232  |
| 14  | 64.100  | 0.062  |
| 15  | 65,200  | 0.550  |
| 16  | 66,200  | 0.566  |
| 17  | 67 200  | 0.007  |
| 18  | 68 100  | 0.007  |
| 10  | 60.200  | 0.010  |
| 19  | 70,000  | 0.004  |
| 20  | 70.300  | 0.038  |
| 21  | 73.200  | 0.344  |
| 22  | 74.200  | 1.363  |
| 23  | 75.200  | 0.694  |
| 24  | 76.200  | 0.938  |
| 25  | 77.100  | 18.649 |
| 26  | 78.100  | 1.412  |
| 27  | 79.200  | 0.290  |
| 28  | 80.200  | 0.011  |
| 29  | 81.100  | 0.016  |
| 30  | 82.100  | 0.007  |
| 31  | 86,000  | 0.000  |
| 32  | 88,000  | 0.001  |
| 33  | 89 100  | 0.0016 |
| 3/  | 90.200  | 0.010  |
| 35  | 91 100  | 0.020  |
| 26  | 02.000  | 0.005  |
| 30  | 92.200  | 0.010  |
| 3/  | 93.200  | 0.125  |
| 38  | 94.200  | 0.514  |
| 39  | 95.200  | 0.233  |
| 40  | 96.200  | 0.016  |
| 41  | 97.200  | 0.003  |
| 42  | 100.000 | 0.018  |
| 43  | 103.300 | 0.009  |
| 44  | 104.300 | 0.178  |
| 45  | 105.200 | 31.537 |
| 46  | 106.200 | 2.252  |
| 47  | 107.200 | 0.134  |
| 48  | 108.100 | 0.000  |
| 49  | 119 300 | 0.010  |
| 50  | 121 200 | 0.294  |
| 51  | 122 100 | 28 304 |
| 52  | 122.100 | 1 995  |
| 52  | 123.100 | 0.404  |
| 53  | 124.100 | 0.121  |
| 54  | 125.100 | 0.001  |
| 55  | 135.100 | 0.009  |
| 56  | 148.100 | 0.000  |
| 57  | 163.100 | 0.018  |
| 58  | 175.200 | 0.002  |
| 59  | 179.100 | 0.012  |
| 60  | 197.000 | 0.001  |
| 61  | 253.100 | 0.000  |
| 62  | 281.100 | 0.004  |
| 63  | 351.100 | 0.003  |
|     |         |        |

Figura 121 – Espectro de Massas; Reação Isopropoxibenzeno com Co(acac)<sub>2</sub>; T.R.= 7.4; Ácido benzóico (continu-ação)



#### Isopropoxibenzeno com Co(acac)2

Figura 122 – Espectro de Massas; Reação Isopropoxibenzeno com Co(acac)<sub>2</sub>; T.R.= 13.8; Benzil

| No. | m/z     | TIC(%) |
|-----|---------|--------|
| 1   | 50.100  | 1.124  |
| 2   | 51.100  | 3.922  |
| 3   | 52.100  | 0.204  |
| 4   | 53.100  | 0.143  |
| 5   | 54.000  | 0.003  |
| 6   | 55.100  | 0.031  |
| 7   | 61.100  | 0.039  |
| 8   | 62.200  | 0.201  |
| 9   | 63.200  | 0.480  |
| 10  | 64.200  | 0.085  |
| 11  | 65,300  | 1.074  |
| 12  | 66,300  | 0.315  |
| 13  | 67 200  | 0.001  |
| 14  | 69.400  | 0.000  |
| 15  | 73 200  | 0.030  |
| 16  | 73.200  | 0.050  |
| 17  | 75 200  | 0.405  |
| 10  | 75.300  | 0.242  |
| 18  | 70.300  | 0.016  |
| 19  | 77.200  | 23.610 |
| 20  | 78.200  | 1.632  |
| 21  | 79.200  | 0.196  |
| 22  | 82.200  | 0.002  |
| 23  | 88.200  | 0.001  |
| 24  | 89.200  | 0.093  |
| 25  | 91.300  | 0.001  |
| 26  | 92.200  | 0.003  |
| 27  | 93.300  | 0.148  |
| 28  | 94.200  | 0.215  |
| 29  | 95.300  | 0.175  |
| 30  | 97.100  | 0.002  |
| 31  | 102.200 | 0.001  |
| 32  | 103.700 | 0.002  |
| 33  | 105.100 | 58.489 |
| 34  | 106.000 | 4.197  |
| 35  | 107.100 | 0.250  |
| 36  | 112.900 | 0.000  |
| 37  | 115 100 | 0.399  |
| 38  | 116 100 | 0.003  |
| 39  | 121 100 | 0.001  |
| 40  | 128 200 | 0.017  |
| 40  | 137 800 | 0.003  |
| 41  | 130 200 | 0.003  |
| 42  | 140.000 | 0.001  |
| 43  | 140.000 | 0.001  |
| 44  | 141.100 | 0.153  |
| 45  | 142.100 | 0.011  |
| 46  | 152.200 | 0.011  |
| 47  | 168.100 | 0.009  |
| 48  | 169.100 | 0.007  |
| 49  | 195.900 | 0.029  |
| 50  | 196.800 | 0.062  |
| 51  | 197.800 | 0.969  |
| 52  | 198.900 | 0.250  |
| 53  | 199.800 | 0.012  |

Figura 123 – Espectro de Massas; Reação Isopropoxibenzeno com Co(acac)<sub>2</sub>; T.R.= 13.8; Benzil (continuação)



#### Isopropoxibenzeno com Co(Acac)2

Figura 124 – Espectro de Massas; Reação Isopropoxibenzeno com Co(acac)<sub>2</sub>; T.R.= 17.8; p-isopropoxibenzofenona

| No. | m/z    | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|--------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.100 | 0.322  | 24  | 91.300  | 0.151  | 47  | 126.200 | 0.022  | 70  | 181.300 | 1.677  |
| 2   | 51.100 | 0.732  | 25  | 92.200  | 0.697  | 48  | 127.200 | 0.001  | 71  | 182.300 | 0.298  |
| 3   | 52.100 | 0.019  | 26  | 93.200  | 1.762  | 49  | 128.200 | 0.014  | 72  | 183.300 | 0.008  |
| 4   | 53.100 | 0.064  | 27  | 94.300  | 0.169  | 50  | 135.300 | 0.001  | 73  | 196.300 | 0.010  |
| 5   | 55.100 | 0.004  | 28  | 95.300  | 0.001  | 51  | 139.300 | 0.604  | 74  | 197.300 | 5.696  |
| 6   | 62.100 | 0.094  | 29  | 99.300  | 0.029  | 52  | 140.200 | 0.107  | 75  | 198.200 | 16.501 |
| 7   | 63.200 | 0.428  | 30  | 102.300 | 0.069  | 53  | 141.300 | 1.390  | 76  | 199.100 | 2.136  |
| 8   | 64.200 | 0.278  | 31  | 103.300 | 0.001  | 54  | 142.200 | 0.230  | 77  | 200.100 | 0.141  |
| 9   | 65.200 | 1.674  | 32  | 104.200 | 0.077  | 55  | 143.200 | 0.005  | 78  | 214.100 | 0.004  |
| 10  | 66.200 | 0.096  | 33  | 105.300 | 3.382  | 56  | 148.900 | 0.004  | 79  | 225.100 | 0.297  |
| 11  | 67.300 | 0.001  | 34  | 106.200 | 0.343  | 57  | 150.200 | 0.040  | 80  | 226.000 | 0.012  |
| 12  | 69.100 | 0.010  | 35  | 107.200 | 0.032  | 58  | 151.200 | 0.131  | 81  | 238.100 | 0.017  |
| 13  | 74.200 | 0.056  | 36  | 111.300 | 0.099  | 59  | 152.200 | 0.434  | 82  | 240.100 | 12.872 |
| 14  | 75.200 | 0.205  | 37  | 112.200 | 0.001  | 60  | 153.200 | 0.065  | 83  | 241.100 | 1.927  |
| 15  | 76.200 | 0.509  | 38  | 113.300 | 0.051  | 61  | 154.200 | 0.022  | 84  | 242.000 | 0.205  |
| 16  | 77.200 | 4.317  | 39  | 114.300 | 0.022  | 62  | 161.200 | 0.027  | 85  | 242.700 | 0.001  |
| 17  | 78.200 | 0.350  | 40  | 115.400 | 1.280  | 63  | 163.200 | 0.016  | 86  | 276.100 | 0.004  |
| 18  | 79.200 | 0.044  | 41  | 116.300 | 0.140  | 64  | 167.500 | 0.004  | 87  | 678.700 | 0.002  |
| 19  | 86.200 | 0.001  | 42  | 119.400 | 0.012  | 65  | 168.300 | 0.092  |     |         |        |
| 20  | 87.200 | 0.049  | 43  | 120.400 | 0.601  | 66  | 169.200 | 0.798  |     |         |        |
| 21  | 88.200 | 0.029  | 44  | 121.200 | 32.471 | 67  | 170.300 | 0.495  |     |         |        |
| 22  | 89.300 | 0.097  | 45  | 122.200 | 2.499  | 68  | 171.300 | 0.050  |     |         |        |
| 23  | 90.300 | 0.006  | 46  | 123.200 | 0.143  | 69  | 180.300 | 0.221  |     |         |        |

Figura 125 – Espectro de Massas; Reação Isopropoxibenzeno com Co(acac)<sub>2</sub>; T.R.= 17.8; p-isopropoxibenzofenona (continuação)

# **B.2.3** AuCl<sub>3</sub>



Figura 126 - Cromatograma da reação Isopropoxibenzeno com AuCl<sub>3</sub>

| No. | Name                    | Structure                                                                                                   | Formula  | Μ       | Base Peak Mass | tR (min) |
|-----|-------------------------|-------------------------------------------------------------------------------------------------------------|----------|---------|----------------|----------|
| 2   | Ácido benzoico          | 0<br>8<br>1<br>4<br>5<br>5<br>6<br>9<br>9                                                                   | C7H6O2   | 122.037 | 105.000        | 7.752    |
| 3   | Benzil                  |                                                                                                             | C14H10O2 | 210.068 | 104.900        | 13.868   |
| 4   | p-isopropoxibenzofenona | $\begin{array}{c} 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$                                  | C16H16O2 | 240.115 | 121.000        | 17.887   |
| 5   | o-isopropoxibenzofenona | $\begin{array}{c} 0\\ 17\\ 18\\ 18\\ 15\\ 14\\ 9\\ 7\\ 8\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12$ | C16H16O2 | 240.115 | 77.000         | 19.146   |



### Isopropoxibenzeno com AuCI3

Figura 128 - Espectro de Massas; Reação Isopropoxibenzeno com AuCl<sub>3</sub>; T.R.= 5,4; Isopropoxibenzeno

| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 49.900  | 0.339  | 43  | 114.900 | 0.031  | 85  | 256.100 | 0.016  | 127 | 649.900 | 0.000  |
| 2   | 50.900  | 1.144  | 44  | 117.000 | 0.058  | 86  | 259.500 | 0.002  | 128 | 665.400 | 0.009  |
| 3   | 51.900  | 0.019  | 45  | 117.900 | 0.011  | 87  | 306.500 | 0.006  | 129 | 676.000 | 0.001  |
| 4   | 52.900  | 0.088  | 46  | 119.800 | 0.006  | 88  | 307.500 | 0.001  | 130 | 677.100 | 0.000  |
| 5   | 54.100  | 0.038  | 47  | 121.000 | 0.712  | 89  | 309.300 | 0.002  | 131 | 681.700 | 0.000  |
| 6   | 55.000  | 0.176  | 48  | 121.800 | 0.017  | 90  | 322.600 | 0.031  | 132 | 702.000 | 0.000  |
| 7   | 58.800  | 0.002  | 49  | 128.000 | 0.002  | 91  | 337.900 | 0.002  | 133 | 704.100 | 0.000  |
| 8   | 60.700  | 0.153  | 50  | 132.300 | 0.000  | 92  | 358.400 | 0.006  | 134 | 710.400 | 0.000  |
| 9   | 61.900  | 0.237  | 51  | 134.600 | 0.030  | 93  | 373.600 | 0.002  | 135 | 712.700 | 0.000  |
| 10  | 63.000  | 0.823  | 52  | 135.200 | 0.713  | 94  | 381.800 | 0.011  | 136 | 717.600 | 0.002  |
| 11  | 64.000  | 0.302  | 53  | 135.900 | 9.774  | 95  | 396.900 | 0.002  | 137 | 720.100 | 0.007  |
| 12  | 65.000  | 2.863  | 54  | 136.900 | 1.058  | 96  | 414.200 | 0.021  | 138 | 729.900 | 0.001  |
| 13  | 66.000  | 13.516 | 55  | 137.800 | 0.063  | 97  | 419.900 | 0.011  | 139 | 731.400 | 0.001  |
| 14  | 66.900  | 0.649  | 56  | 145.000 | 0.101  | 98  | 423.400 | 0.000  | 140 | 734.300 | 0.001  |
| 15  | 71.700  | 0.000  | 57  | 145.800 | 0.004  | 99  | 424.700 | 0.000  | 141 | 738.500 | 0.000  |
| 16  | 72.700  | 0.000  | 58  | 146.900 | 0.006  | 100 | 426.500 | 0.036  | 142 | 739.900 | 0.000  |
| 17  | 73.900  | 0.199  | 59  | 148.100 | 0.005  | 101 | 429.600 | 0.000  | 143 | 753.300 | 0.021  |
| 18  | 75.000  | 0.035  | 60  | 151.700 | 0.007  | 102 | 430.900 | 0.000  | 144 | 754.000 | 0.012  |
| 19  | 75.800  | 0.065  | 61  | 152.900 | 0.008  | 103 | 473.800 | 0.000  | 145 | 754.900 | 0.000  |
| 20  | 77.000  | 2.225  | 62  | 158.800 | 0.047  | 104 | 482.000 | 0.001  | 146 | 755.800 | 0.000  |
| 21  | 77.900  | 0.179  | 63  | 163.200 | 0.000  | 105 | 484.000 | 0.008  | 147 | 760.300 | 0.001  |
| 22  | 79.000  | 0.116  | 64  | 164.100 | 0.000  | 106 | 498.600 | 0.033  | 148 | 791.800 | 0.001  |
| 23  | 81.000  | 0.012  | 65  | 168.900 | 0.003  | 107 | 508.900 | 0.001  | 149 | 804.200 | 0.000  |
| 24  | 86.500  | 0.011  | 66  | 170.900 | 0.106  | 108 | 518.900 | 0.001  | 150 | 805.500 | 0.000  |
| 25  | 87.600  | 0.006  | 67  | 171.800 | 0.002  | 109 | 521.900 | 0.010  | 151 | 808.500 | 0.000  |
| 26  | 89.000  | 0.001  | 68  | 175.900 | 0.001  | 110 | 523.400 | 0.010  | 152 | 849.000 | 0.002  |
| 27  | 89.700  | 0.018  | 69  | 177.100 | 0.007  | 111 | 540.100 | 0.003  | 153 | 853.100 | 0.026  |
| 28  | 91.000  | 0.715  | 70  | 178.000 | 0.000  | 112 | 541.300 | 0.001  | 154 | 854.300 | 0.001  |
| 29  | 92.000  | 0.091  | 71  | 178.700 | 0.012  | 113 | 542.200 | 0.002  | 155 | 864.700 | 0.000  |
| 30  | 93.000  | 0.844  | 72  | 184.200 | 0.000  | 114 | 547.000 | 0.006  | 156 | 865.600 | 0.000  |
| 31  | 94.000  | 56.182 | 73  | 202.100 | 0.006  | 115 | 549.700 | 0.002  | 157 | 908.800 | 0.001  |
| 32  | 94.900  | 4.806  | 74  | 203.600 | 0.001  | 116 | 551.300 | 0.001  | 158 | 911.100 | 0.001  |
| 33  | 96.000  | 0.284  | 75  | 204.700 | 0.000  | 117 | 567.300 | 0.001  | 159 | 922.300 | 0.006  |
| 34  | 96.700  | 0.030  | 76  | 205.500 | 0.000  | 118 | 582.700 | 0.001  | 160 | 927.400 | 0.006  |
| 35  | 98.500  | 0.000  | 77  | 220.700 | 0.000  | 119 | 590.800 | 0.016  | 161 | 961.300 | 0.000  |
| 36  | 100.900 | 0.000  | 78  | 225.100 | 0.058  | 120 | 592.600 | 0.000  | 162 | 962.500 | 0.000  |
| 37  | 102.000 | 0.016  | 79  | 226.500 | 0.019  | 121 | 595.300 | 0.001  | 163 | 964.500 | 0.000  |
| 38  | 103.000 | 0.028  | 80  | 233.600 | 0.001  | 122 | 598.400 | 0.000  | 164 | 969.600 | 0.001  |
| 39  | 103.800 | 0.018  | 81  | 235.400 | 0.001  | 123 | 602.100 | 0.014  | 165 | 988.800 | 0.000  |
| 40  | 105.000 | 0.148  | 82  | 236.600 | 0.013  | 124 | 606.400 | 0.006  | 166 | 990.500 | 0.001  |
| 41  | 106.900 | 0.245  | 83  | 241.900 | 0.001  | 125 | 639.900 | 0.002  |     |         |        |
| 42  | 107.900 | 0.024  | 84  | 242.600 | 0.001  | 126 | 645.100 | 0.082  |     |         |        |

Figura 129 – Espectro de Massas; Reação Isopropoxibenzeno com AuCl<sub>3</sub>; T.R.= 5,4; Isopropoxibenzeno(continuação)



### Isopropoxibenzeno com AuCI3

Figura 130 - Espectro de Massas; Reação Isopropoxibenzeno com AuCl<sub>3</sub>; T.R.=7.8; Ácido benzóico
| No | m/z    | TIC(%) | No | m/z     | TIC(%) | No  | m/z     | TIC(%) | No  | m/z     | TIC(%) |
|----|--------|--------|----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1  | 49.900 | 1.897  | 40 | 100.000 | 0.208  | 79  | 234.800 | 0.003  | 118 | 629.000 | 0.019  |
| 2  | 50,900 | 4.097  | 41 | 100.900 | 0.014  | 80  | 244.000 | 0.002  | 119 | 640,400 | 0.001  |
| 3  | 51,900 | 0.407  | 42 | 102.000 | 0.078  | 81  | 246.500 | 0.000  | 120 | 669.100 | 0.001  |
| 4  | 52.900 | 0.337  | 43 | 102.800 | 0.008  | 82  | 260.000 | 0.000  | 121 | 671.200 | 0.001  |
| 5  | 53.900 | 0.048  | 44 | 104.000 | 0.170  | 83  | 272.600 | 0.013  | 122 | 672.900 | 0.001  |
| 6  | 54.900 | 0.026  | 45 | 105.000 | 29.085 | 84  | 274.500 | 0.000  | 123 | 680.800 | 0.003  |
| 7  | 56.300 | 0.005  | 46 | 105.900 | 2.526  | 85  | 300.700 | 0.001  | 124 | 689.700 | 0.001  |
| 8  | 59.600 | 0.024  | 47 | 107.000 | 0.161  | 86  | 302.800 | 0.003  | 125 | 711.100 | 0.001  |
| 9  | 60.900 | 0.188  | 48 | 108.200 | 0.044  | 87  | 308.900 | 0.001  | 126 | 717.600 | 0.008  |
| 10 | 61.900 | 0.117  | 49 | 109.900 | 0.007  | 88  | 309.600 | 0.001  | 127 | 737.300 | 0.001  |
| 11 | 62.900 | 0.179  | 50 | 113.000 | 0.019  | 89  | 352.800 | 0.001  | 128 | 747.600 | 0.000  |
| 12 | 64.000 | 0.280  | 51 | 121.000 | 0.165  | 90  | 393.000 | 0.003  | 129 | 786.200 | 0.001  |
| 13 | 65.000 | 0.452  | 52 | 121.900 | 26.605 | 91  | 402.800 | 0.000  | 130 | 787.700 | 0.001  |
| 14 | 66.000 | 0.236  | 53 | 122.900 | 2.185  | 92  | 413.800 | 0.001  | 131 | 789.300 | 0.001  |
| 15 | 67.000 | 0.057  | 54 | 124.000 | 0.461  | 93  | 422.600 | 0.001  | 132 | 802.500 | 0.001  |
| 16 | 68.800 | 0.007  | 55 | 127.900 | 3.979  | 94  | 423.900 | 0.001  | 133 | 814.400 | 0.007  |
| 17 | 70.000 | 0.046  | 56 | 129.000 | 0.312  | 95  | 424.600 | 0.001  | 134 | 815.300 | 0.001  |
| 18 | 71.600 | 0.001  | 57 | 129.900 | 1.321  | 96  | 443.300 | 0.001  | 135 | 816.400 | 0.001  |
| 19 | 73.000 | 0.262  | 58 | 130.900 | 0.144  | 97  | 444.400 | 0.004  | 136 | 817.700 | 0.001  |
| 20 | 74.000 | 1.543  | 59 | 138.900 | 0.008  | 98  | 449.900 | 0.001  | 137 | 836.000 | 0.001  |
| 21 | 74.900 | 0.757  | 60 | 141.000 | 0.029  | 99  | 458.700 | 0.001  | 138 | 836.700 | 0.001  |
| 22 | 76.000 | 0.830  | 61 | 141.900 | 0.007  | 100 | 464.100 | 0.001  | 139 | 838.900 | 0.000  |
| 23 | 77.000 | 16.753 | 62 | 142.900 | 0.004  | 101 | 480.000 | 0.001  | 140 | 845.000 | 0.001  |
| 24 | 77.900 | 1.482  | 63 | 152.300 | 0.001  | 102 | 484.600 | 0.001  | 141 | 860.700 | 0.001  |
| 25 | 79.000 | 0.141  | 64 | 154.800 | 0.047  | 103 | 485.600 | 0.001  | 142 | 888.700 | 0.001  |
| 26 | 80.000 | 0.023  | 65 | 156.900 | 0.017  | 104 | 504.300 | 0.001  | 143 | 898.900 | 0.001  |
| 27 | 81.900 | 0.007  | 66 | 161.000 | 0.007  | 105 | 507.500 | 0.001  | 144 | 909.500 | 0.001  |
| 28 | 85.000 | 0.081  | 67 | 169.000 | 0.032  | 106 | 510.300 | 0.001  | 145 | 917.500 | 0.000  |
| 29 | 87.800 | 0.004  | 68 | 169.900 | 0.181  | 107 | 514.700 | 0.007  | 146 | 925.400 | 0.001  |
| 30 | 89.000 | 0.037  | 69 | 170.900 | 0.049  | 108 | 526.500 | 0.001  | 147 | 932.800 | 0.017  |
| 31 | 91.000 | 0.041  | 70 | 171.800 | 0.208  | 109 | 531.600 | 0.007  | 148 | 936.000 | 0.001  |
| 32 | 92.000 | 0.265  | 71 | 173.300 | 0.007  | 110 | 546.600 | 0.001  | 149 | 946.300 | 0.000  |
| 33 | 92.900 | 0.079  | 72 | 179.000 | 0.004  | 111 | 554.300 | 0.001  | 150 | 965.200 | 0.001  |
| 34 | 94.000 | 0.600  | 73 | 187.100 | 0.001  | 112 | 604.400 | 0.019  | 151 | 987.700 | 0.001  |
| 35 | 95.000 | 0.229  | 74 | 197.500 | 0.001  | 113 | 606.700 | 0.001  | 152 | 990.400 | 0.001  |
| 36 | 95.700 | 0.042  | 75 | 199.400 | 0.001  | 114 | 610.500 | 0.000  | 153 | 993.800 | 0.002  |
| 37 | 96.500 | 0.001  | 76 | 212.800 | 0.001  | 115 | 617.600 | 0.013  |     |         |        |
| 38 | 97.800 | 0.001  | 77 | 215.100 | 0.001  | 116 | 625.900 | 0.001  |     |         |        |
| 39 | 98.900 | 0.153  | 78 | 231.100 | 0.001  | 117 | 627.500 | 0.001  |     |         |        |

Figura 131 – Espectro de Massas; Reação Isopropoxibenzeno com AuCl<sub>3</sub>; T.R.=7.8; Ácido benzóico (continuação)



## Isopropoxibenzeno com AuCl3

Figura 132 - Espectro de Massas; Reação Isopropoxibenzeno com AuCl<sub>3</sub>; T.R.= 13.9; Benzil

| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 49.900  | 0.726  | 69  | 162.800 | 0.048  | 137 | 446.200 | 0.000  | 205 | 715.500 | 0.001  |
| 2   | 50,900  | 3.054  | 70  | 167.900 | 0.014  | 138 | 447.000 | 0.000  | 206 | 716,700 | 0.000  |
| 3   | 52,000  | 0.147  | 71  | 169,100 | 0.051  | 139 | 452,000 | 0.001  | 207 | 718,100 | 0.000  |
| 4   | 53,000  | 0 154  | 72  | 170 200 | 0.028  | 140 | 457 000 | 0.000  | 208 | 739 100 | 0.001  |
| 5   | 54 100  | 0.046  | 72  | 177.000 | 0.000  | 141 | 461 200 | 0.000  | 200 | 744 200 | 0.005  |
| 5   | 54.100  | 0.040  | 73  | 177.000 | 0.000  | 141 | 401.200 | 0.000  | 209 | 744.300 | 0.005  |
| 0   | 55.100  | 0.056  | 74  | 178.900 | 0.000  | 142 | 462.700 | 0.000  | 210 | 749.500 | 0.001  |
| 1   | 57.100  | 0.008  | 75  | 181.000 | 0.002  | 143 | 466.900 | 0.001  | 211 | 751.500 | 0.005  |
| 8   | 58.800  | 0.002  | 76  | 182.100 | 0.008  | 144 | 472.800 | 0.001  | 212 | 758.900 | 0.001  |
| 9   | 61.000  | 0.130  | 77  | 184.400 | 0.002  | 145 | 476.900 | 0.000  | 213 | 759.700 | 0.000  |
| 10  | 62.000  | 0.111  | 78  | 187.800 | 0.005  | 146 | 478.200 | 0.000  | 214 | 763.800 | 0.000  |
| 11  | 63.000  | 0.472  | 79  | 188.700 | 0.000  | 147 | 483.400 | 0.001  | 215 | 774.500 | 0.000  |
| 12  | 64.000  | 0.074  | 80  | 189,400 | 0.000  | 148 | 488,600 | 0.000  | 216 | 775.500 | 0.000  |
| 13  | 65 000  | 1 295  | 81  | 193,500 | 0.012  | 149 | 498 500 | 0.000  | 217 | 780,700 | 0.001  |
| 14  | 66 100  | 0.108  | 82  | 195.000 | 0.063  | 150 | 100.000 | 0.000  | 218 | 790 500 | 0.000  |
| 15  | 68 500  | 0.004  | 83  | 196.000 | 0.186  | 151 | 504 100 | 0.000  | 210 | 791.400 | 0.000  |
| 10  | 70,500  | 0.004  | 0.0 | 106 700 | 0.160  | 150 | 509.100 | 0.001  | 213 | 901 500 | 0.005  |
| 16  | 70.500  | 0.020  | 04  | 196.700 | 0.162  | 152 | 509.100 | 0.000  | 220 | 801.500 | 0.005  |
| 17  | 73.000  | 0.039  | 85  | 197.700 | 1.444  | 153 | 518.200 | 0.001  | 221 | 802.300 | 0.000  |
| 18  | 74.000  | 0.467  | 86  | 198.800 | 0.178  | 154 | 519.700 | 0.001  | 222 | 803.900 | 0.000  |
| 19  | 75.000  | 0.287  | 87  | 200.000 | 0.005  | 155 | 528.900 | 0.000  | 223 | 805.100 | 0.016  |
| 20  | 76.100  | 0.496  | 88  | 204.000 | 0.004  | 156 | 529.800 | 0.000  | 224 | 807.900 | 0.002  |
| 21  | 77.000  | 22.023 | 89  | 205.000 | 0.000  | 157 | 530.600 | 0.000  | 225 | 813.200 | 0.002  |
| 22  | 78.000  | 1.556  | 90  | 215.100 | 0.000  | 158 | 535.100 | 0.000  | 226 | 816.200 | 0.001  |
| 23  | 79.000  | 0.193  | 91  | 218,900 | 0.002  | 159 | 539,100 | 0.000  | 227 | 817.500 | 0.000  |
| 24  | 80 100  | 0.008  | 92  | 220,900 | 0.002  | 160 | 540 100 | 0.000  | 228 | 821 900 | 0.000  |
| 25  | 81 600  | 0.000  | 02  | 235 700 | 0.001  | 161 | 541 200 | 0.000  | 229 | 822 800 | 0.000  |
| 20  | 84.000  | 0.000  | 04  | 253.700 | 0.001  | 162 | 542 200 | 0.000  | 220 | 926 200 | 0.000  |
| 20  | 87.000  | 0.024  | 94  | 203.000 | 0.008  | 102 | 543.300 | 0.001  | 230 | 827.200 | 0.010  |
| 27  | 87.000  | 0.003  | 95  | 265.400 | 0.000  | 163 | 544.700 | 0.000  | 231 | 827.700 | 0.000  |
| 28  | 87.900  | 0.020  | 96  | 275.100 | 0.019  | 164 | 550.700 | 0.000  | 232 | 836.900 | 0.003  |
| 29  | 89.000  | 0.087  | 97  | 280.500 | 0.000  | 165 | 566.000 | 0.000  | 233 | 838.100 | 0.000  |
| 30  | 91.200  | 0.016  | 98  | 286.000 | 0.000  | 166 | 566.800 | 0.000  | 234 | 840.500 | 0.011  |
| 31  | 92.300  | 0.016  | 99  | 289.900 | 0.000  | 167 | 570.500 | 0.000  | 235 | 846.800 | 0.000  |
| 32  | 93.000  | 0.208  | 100 | 291.000 | 0.000  | 168 | 571.600 | 0.000  | 236 | 848.100 | 0.000  |
| 33  | 94.100  | 0.086  | 101 | 291.700 | 0.000  | 169 | 576.900 | 0.000  | 237 | 852.200 | 0.012  |
| 34  | 95.000  | 0.123  | 102 | 296,600 | 0.000  | 170 | 577.600 | 0.000  | 238 | 867.000 | 0.000  |
| 35  | 98 100  | 0.012  | 103 | 300 500 | 0.009  | 171 | 580,000 | 0.001  | 239 | 869 700 | 0.000  |
| 36  | 99 900  | 0.001  | 104 | 302 000 | 0.000  | 172 | 581 900 | 0.001  | 240 | 879 600 | 0.000  |
| 27  | 102.000 | 0.074  | 105 | 306.800 | 0.000  | 172 | 501.000 | 0.001  | 240 | 889.400 | 0.000  |
| 20  | 102.000 | 0.074  | 100 | 317,600 | 0.000  | 173 | 594.900 | 0.000  | 241 | 801.000 | 0.000  |
| 30  | 103.000 | 0.002  | 100 | 317.600 | 0.000  | 174 | 598.500 | 0.000  | 242 | 891.000 | 0.000  |
| 39  | 104.200 | 0.174  | 107 | 319.800 | 0.001  | 1/5 | 603.200 | 0.000  | 243 | 895.700 | 0.001  |
| 40  | 104.900 | 58.070 | 108 | 320.800 | 0.020  | 176 | 616.500 | 0.001  | 244 | 900.800 | 0.001  |
| 41  | 105.800 | 5.644  | 109 | 323.400 | 0.000  | 177 | 623.600 | 0.015  | 245 | 904.100 | 0.002  |
| 42  | 106.900 | 0.302  | 110 | 328.000 | 0.001  | 178 | 627.600 | 0.000  | 246 | 905.500 | 0.005  |
| 43  | 108.000 | 0.030  | 111 | 335.700 | 0.000  | 179 | 629.700 | 0.000  | 247 | 911.500 | 0.001  |
| 44  | 109.100 | 0.000  | 112 | 336.700 | 0.005  | 180 | 633.800 | 0.001  | 248 | 914.600 | 0.000  |
| 45  | 111.200 | 0.000  | 113 | 337.500 | 0.000  | 181 | 634.500 | 0.000  | 249 | 915.700 | 0.000  |
| 46  | 112,900 | 0.003  | 114 | 338.600 | 0.000  | 182 | 639,500 | 0.000  | 250 | 917.500 | 0.000  |
| 47  | 114.900 | 0.410  | 115 | 342.200 | 0.000  | 183 | 640.800 | 0.002  | 251 | 928.300 | 0.002  |
| 48  | 116 100 | 0.033  | 116 | 343 700 | 0.000  | 184 | 643 200 | 0.002  | 252 | 941 300 | 0.001  |
| 40  | 120 900 | 0.005  | 117 | 369 500 | 0.001  | 185 | 649 700 | 0.001  | 253 | 942 000 | 0,000  |
| 50  | 126 600 | 0.000  | 110 | 374 100 | 0.000  | 196 | 650 500 | 0.001  | 254 | 943 600 | 0.000  |
| 50  | 120.000 | 0.000  | 110 | 374.100 | 0.000  | 100 | 654,000 | 0.001  | 204 | 943.000 | 0.000  |
| 51  | 129.100 | 0.012  | 100 | 373.500 | 0.000  | 107 | 004.900 | 0.000  | 200 | 947.900 | 0.000  |
| 52  | 130.400 | 0.008  | 120 | 380.300 | 0.001  | 188 | 655.900 | 0.000  | 256 | 948.700 | 0.000  |
| 53  | 133.100 | 0.012  | 121 | 385.700 | 0.001  | 189 | 657.700 | 0.001  | 257 | 958.800 | 0.001  |
| 54  | 136.800 | 0.016  | 122 | 389.100 | 0.000  | 190 | 662.100 | 0.002  | 258 | 963.100 | 0.000  |
| 55  | 138.100 | 0.002  | 123 | 391.200 | 0.000  | 191 | 665.000 | 0.000  | 259 | 963.900 | 0.000  |
| 56  | 139.000 | 0.147  | 124 | 396.700 | 0.012  | 192 | 675.200 | 0.000  | 260 | 968.500 | 0.000  |
| 57  | 139.800 | 0.027  | 125 | 404.800 | 0.000  | 193 | 676.200 | 0.000  | 261 | 969.500 | 0.002  |
| 58  | 141.000 | 0.245  | 126 | 409.800 | 0.001  | 194 | 681.200 | 0.000  | 262 | 973.700 | 0.001  |
| 59  | 142.000 | 0.041  | 127 | 414.800 | 0.001  | 195 | 691.000 | 0.000  | 263 | 974.500 | 0.001  |
| 60  | 146.000 | 0.016  | 128 | 420.200 | 0.002  | 196 | 692.200 | 0.000  | 264 | 988.300 | 0.000  |
| 61  | 146 900 | 0.032  | 129 | 421 000 | 0.000  | 197 | 694 400 | 0.000  | 265 | 989 600 | 0.000  |
| 62  | 150 700 | 0.002  | 120 | 427.000 | 0.000  | 109 | 605 500 | 0.000  | 200 | 000.000 | 0.000  |
| 62  | 151.000 | 0.001  | 100 | 424 700 | 0.003  | 100 | 606 600 | 0.000  | 200 | 004 600 | 0.000  |
| 03  | 151.900 | 0.009  | 131 | 434.700 | 0.003  | 199 | 090.000 | 0.000  | 207 | 994.600 | 0.000  |
| 64  | 152.800 | 0.005  | 132 | 435.600 | 0.001  | 200 | 697.500 | 0.000  | 268 | 995.200 | 0.000  |
| 65  | 154.000 | 0.001  | 133 | 437.900 | 0.005  | 201 | 702.200 | 0.000  |     |         |        |
| 66  | 155.000 | 0.009  | 134 | 441.100 | 0.003  | 202 | 711.400 | 0.000  |     |         |        |
| 67  | 156.800 | 0.000  | 135 | 444.500 | 0.011  | 203 | 712.500 | 0.000  |     |         |        |
| 68  | 158.100 | 0.000  | 136 | 445.400 | 0.003  | 204 | 713.500 | 0.000  |     |         |        |

Figura 133 – Espectro de Massas; Reação Isopropoxibenzeno com AuCl<sub>3</sub>; T.R.= 13.9; Benzil (continuação)



## Isopropoxibenzeno com AuCI3

Figura 134 - Espectro de Massas; Reação Isopropoxibenzeno com AuCl<sub>3</sub>; T.R.= 19.1; o-isopropoxibenzofenona

| No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 49.900  | 0.121  | 69  | 142.000 | 0.032  | 137 | 481.800 | 0.011  |
| 2   | 50.900  | 1.348  | 70  | 147.000 | 1.125  | 138 | 494.600 | 0.003  |
| 3   | 53.000  | 0.069  | 71  | 148.100 | 0.004  | 139 | 496.100 | 0.001  |
| 4   | 53.700  | 0.018  | 72  | 151.100 | 0.059  | 140 | 514.900 | 0.001  |
| 5   | 54.900  | 0.630  | 73  | 152.000 | 0.443  | 141 | 516.200 | 0.001  |
| 6   | 59.700  | 0.126  | 74  | 152.900 | 0.030  | 142 | 523.000 | 0.003  |
| /   | 61.700  | 0.043  | 75  | 154.200 | 0.029  | 143 | 541.800 | 0.049  |
| 8   | 63.000  | 0.444  | 76  | 155.100 | 0.227  | 144 | 549.700 | 0.003  |
| 9   | 63.900  | 1.009  | 70  | 158.500 | 0.017  | 145 | 554.600 | 0.001  |
| 11  | 66,000  | 0.105  | 70  | 160,900 | 0.024  | 140 | 565 600 | 0.001  |
| 12  | 66,900  | 0.105  | 80  | 163.000 | 10 222 | 147 | 580,800 | 0.001  |
| 13  | 68,000  | 0.005  | 81  | 163,900 | 1.576  | 149 | 595,700 | 0.065  |
| 14  | 69,100  | 0.161  | 82  | 165.000 | 0.916  | 150 | 596,400 | 0.001  |
| 15  | 70.000  | 0.035  | 83  | 166.000 | 0.201  | 151 | 606.400 | 0.001  |
| 16  | 70.900  | 0.116  | 84  | 166.800 | 0.142  | 152 | 607.800 | 0.001  |
| 17  | 73.900  | 0.001  | 85  | 167.900 | 0.022  | 153 | 609.900 | 0.001  |
| 18  | 75.000  | 0.392  | 86  | 176.200 | 0.019  | 154 | 610.600 | 0.001  |
| 19  | 76.000  | 0.796  | 87  | 177.000 | 0.001  | 155 | 617.100 | 0.001  |
| 20  | 77.000  | 16.923 | 88  | 178.000 | 1.115  | 156 | 631.300 | 0.001  |
| 21  | 78.000  | 1.423  | 89  | 179.000 | 0.358  | 157 | 632.600 | 0.003  |
| 22  | 79.000  | 1.150  | 90  | 181.000 | 0.453  | 158 | 633.900 | 0.003  |
| 23  | 80.100  | 0.007  | 91  | 181.900 | 1.040  | 159 | 638.400 | 0.016  |
| 24  | 81.000  | 0.086  | 92  | 183.000 | 0.358  | 160 | 652.200 | 0.001  |
| 25  | 82.000  | 0.013  | 93  | 184.000 | 0.037  | 161 | 674.600 | 0.003  |
| 26  | 83.000  | 0.032  | 94  | 189.700 | 0.034  | 162 | 675.200 | 0.004  |
| 27  | 84.000  | 0.081  | 95  | 195.000 | 0.187  | 163 | 683.900 | 0.001  |
| 28  | 84.900  | 0.033  | 96  | 195.800 | 0.152  | 164 | 699.100 | 0.028  |
| 29  | 85.900  | 0.084  | 97  | 197.000 | 1.823  | 165 | 705.900 | 0.001  |
| 30  | 87.000  | 0.053  | 98  | 197.900 | 0.424  | 166 | 714.600 | 0.003  |
| 31  | 88.800  | 0.243  | 99  | 199.000 | 0.083  | 167 | 716.500 | 0.001  |
| 32  | 90.100  | 0.190  | 100 | 199.900 | 0.007  | 168 | 731.000 | 0.042  |
| 24  | 91.000  | 0.525  | 107 | 207.100 | 0.009  | 170 | 731.800 | 0.003  |
| 35  | 93 100  | 0.000  | 102 | 210,000 | 0.508  | 170 | 743 200 | 0.001  |
| 36  | 94 200  | 0.103  | 104 | 210.000 | 0.000  | 172 | 745 100 | 0.001  |
| 37  | 94,900  | 0.318  | 105 | 212.000 | 0.108  | 173 | 778.800 | 0.001  |
| 38  | 95,900  | 0.013  | 106 | 214.000 | 0.020  | 174 | 798.300 | 0.133  |
| 39  | 97.000  | 0.094  | 107 | 221.100 | 0.084  | 175 | 800.800 | 0.001  |
| 40  | 98.100  | 0.065  | 108 | 223.100 | 0.161  | 176 | 802.500 | 0.001  |
| 41  | 100.900 | 0.114  | 109 | 224.000 | 0.173  | 177 | 803.900 | 0.003  |
| 42  | 102.100 | 0.005  | 110 | 225.000 | 12.673 | 178 | 831.100 | 0.001  |
| 43  | 102.900 | 0.476  | 111 | 226.000 | 1.685  | 179 | 831.900 | 0.001  |
| 44  | 104.000 | 0.175  | 112 | 231.800 | 0.018  | 180 | 835.100 | 0.001  |
| 45  | 104.900 | 16.048 | 113 | 239.000 | 0.113  | 181 | 836.200 | 0.001  |
| 46  | 105.800 | 1.455  | 114 | 240.000 | 5.295  | 182 | 845.700 | 0.003  |
| 47  | 107.000 | 1.890  | 115 | 241.100 | 0.669  | 183 | 876.700 | 0.001  |
| 48  | 108.100 | 0.070  | 116 | 242.100 | 0.048  | 184 | 889.100 | 0.003  |
| 49  | 113.900 | 0.007  | 117 | 254.100 | 0.034  | 185 | 903.100 | 0.001  |
| 50  | 114.900 | 1.254  | 118 | 282.100 | 0.028  | 186 | 903.800 | 0.001  |
| 51  | 115.000 | 0.126  | 119 | 311.900 | 0.001  | 187 | 920.400 | 0.003  |
| 52  | 117.100 | 0.007  | 120 | 343.400 | 0.003  | 188 | 922.600 | 0.003  |
| 53  | 120.000 | 0.279  | 121 | 345.400 | 0.001  | 109 | 924.200 | 0.001  |
| 55  | 120.000 | 0.14/  | 122 | 368 000 | 0.001  | 101 | 920.900 | 0.003  |
| 56  | 121.000 | 0.205  | 123 | 408 400 | 0.001  | 102 | 933.700 | 0.011  |
| 57  | 126 800 | 0.007  | 125 | 409,100 | 0.001  | 193 | 944 800 | 0.001  |
| 58  | 127 900 | 0.206  | 126 | 410,500 | 0.001  | 194 | 951,500 | 0.001  |
| 59  | 128.900 | 0.030  | 127 | 411,600 | 0.001  | 195 | 977.900 | 0.001  |
| 60  | 130.100 | 0.022  | 128 | 417.000 | 0.001  | 196 | 987.600 | 0.001  |
| 61  | 131.000 | 0.089  | 129 | 419.000 | 0.003  | 197 | 988.800 | 0.001  |
| 62  | 132.000 | 0.040  | 130 | 433.700 | 0.001  | 198 | 990.300 | 0.001  |
| 63  | 133.000 | 0.305  | 131 | 438.400 | 0.003  | 199 | 991.700 | 0.001  |
| 64  | 134.000 | 0.278  | 132 | 440.000 | 0.001  | 200 | 992.500 | 0.001  |
| 65  | 135.000 | 0.170  | 133 | 450.700 | 0.001  | 201 | 994.100 | 0.003  |
| 66  | 135.800 | 0.001  | 134 | 462.700 | 0.001  |     |         |        |
| 67  | 139.100 | 0.180  | 135 | 464.200 | 0.003  |     |         |        |
| 68  | 141.100 | 0.225  | 136 | 479.700 | 0.001  |     |         |        |

Figura 135 – Espectro de Massas; Reação isopropoxibenzofenona(continuação)

Isopropoxibenzeno com AuCl<sub>3</sub>; T.R.= 19.1; o-



## Isopropoxibenzeno com AuCI3

Figura 136 – EEspectro de Massas; Reação Isopropoxibenzeno com AuCl<sub>3</sub>; T.R.= 17.9; p-isopropoxibenzofenona

| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.000  | 0.293  | 60  | 155.000 | 0.008  | 119 | 491.400 | 0.001  | 178 | 756.900 | 0.000  |
| 2   | 50.900  | 0.518  | 61  | 156.100 | 0.001  | 120 | 494.200 | 0.000  | 179 | 770.700 | 0.000  |
| 3   | 52.000  | 0.003  | 62  | 161.800 | 0.001  | 121 | 495.300 | 0.002  | 180 | 773.600 | 0.000  |
| 4   | 53.000  | 0.042  | 63  | 163.100 | 0.111  | 122 | 501.200 | 0.001  | 181 | 776.000 | 0.001  |
| 5   | 59.000  | 0.018  | 64  | 164.900 | 0.026  | 123 | 509.800 | 0.000  | 182 | 781.700 | 0.000  |
| 6   | 61.000  | 0.008  | 65  | 165,700 | 0.028  | 124 | 511,100 | 0.000  | 183 | 796,700 | 0.000  |
| 7   | 61.900  | 0.028  | 66  | 168.000 | 0.189  | 125 | 512,100 | 0.000  | 184 | 798.300 | 0.000  |
| 8   | 62 900  | 0.367  | 67  | 169 000 | 0.692  | 126 | 512 900 | 0.001  | 185 | 799 200 | 0.000  |
| 9   | 64 000  | 0 154  | 68  | 170 100 | 0.312  | 127 | 521 900 | 0.001  | 186 | 800 900 | 0.000  |
| 10  | 65,000  | 1 004  | 69  | 171.000 | 0.032  | 128 | 525 700 | 0.000  | 187 | 802 900 | 0.001  |
| 11  | 66.000  | 0.079  | 70  | 170.100 | 0.031  | 120 | 527,200 | 0.000  | 107 | 804.000 | 0.001  |
| 12  | 74.000  | 0.078  | 70  | 180,000 | 0.031  | 129 | 527.200 | 0.001  | 100 | 805.000 | 0.001  |
| 12  | 74.000  | 0.005  | 71  | 181.000 | 0.245  | 130 | 544.000 | 0.001  | 109 | 818 100 | 0.001  |
| 13  | 75.000  | 0.041  | 72  | 181.000 | 2.210  | 131 | 546.000 | 0.000  | 190 | 010.100 | 0.000  |
| 14  | 76.000  | 0.341  | 73  | 182.100 | 0.408  | 132 | 547.700 | 0.000  | 191 | 819.300 | 0.000  |
| 15  | 77.000  | 3.159  | 74  | 182.900 | 0.025  | 133 | 548.700 | 0.001  | 192 | 821.800 | 0.001  |
| 16  | 78.000  | 0.212  | 75  | 184.700 | 0.006  | 134 | 549.400 | 0.000  | 193 | 823.200 | 0.000  |
| 17  | 87.000  | 0.017  | 76  | 195.200 | 0.002  | 135 | 550.700 | 0.000  | 194 | 824.000 | 0.000  |
| 18  | 87.900  | 0.012  | 77  | 196.000 | 0.168  | 136 | 551.700 | 0.001  | 195 | 836.600 | 0.005  |
| 19  | 88.900  | 0.145  | 78  | 197.000 | 7.759  | 137 | 553.200 | 0.000  | 196 | 837.300 | 0.000  |
| 20  | 89.900  | 0.067  | 79  | 198.000 | 16.862 | 138 | 556.500 | 0.002  | 197 | 838.800 | 0.001  |
| 21  | 91.100  | 0.178  | 80  | 199.000 | 2.356  | 139 | 567.200 | 0.001  | 198 | 842.800 | 0.000  |
| 22  | 92.000  | 0.543  | 81  | 200.000 | 0.294  | 140 | 568.900 | 0.000  | 199 | 844.000 | 0.000  |
| 23  | 93.000  | 1.797  | 82  | 200.900 | 0.000  | 141 | 579.000 | 0.002  | 200 | 844.900 | 0.011  |
| 24  | 94.000  | 0.059  | 83  | 201.900 | 0.000  | 142 | 581.500 | 0.000  | 201 | 845.700 | 0.000  |
| 25  | 94.900  | 0.024  | 84  | 202.800 | 0.000  | 143 | 583.100 | 0.000  | 202 | 846.400 | 0.000  |
| 26  | 95.900  | 0.000  | 85  | 204.000 | 0.005  | 144 | 584.700 | 0.000  | 203 | 859.200 | 0.000  |
| 27  | 97.900  | 0.001  | 86  | 205.600 | 0.001  | 145 | 585.500 | 0.000  | 204 | 860.400 | 0.005  |
| 28  | 100.600 | 0.012  | 87  | 209.000 | 0.008  | 146 | 591,200 | 0.002  | 205 | 862.300 | 0.009  |
| 29  | 102.000 | 0.013  | 88  | 210,100 | 0.033  | 147 | 603.800 | 0.000  | 206 | 863.800 | 0.000  |
| 30  | 103,100 | 0.013  | 89  | 213,200 | 0.023  | 148 | 605,700 | 0.000  | 207 | 865,300 | 0.000  |
| 31  | 103.900 | 0.037  | 90  | 225.000 | 0.326  | 149 | 607,100 | 0.000  | 208 | 866.600 | 0.000  |
| 32  | 105.000 | 2 891  | 91  | 226,000 | 0.002  | 150 | 609 600 | 0.001  | 209 | 872 400 | 0.002  |
| 33  | 106.000 | 0.290  | 92  | 228 700 | 0.001  | 151 | 624 600 | 0.000  | 210 | 884 000 | 0.001  |
| 34  | 107 100 | 0.026  | 02  | 231 300 | 0.001  | 152 | 626.400 | 0.000  | 211 | 885 400 | 0.000  |
| 35  | 110,000 | 0.020  | 04  | 236.400 | 0.001  | 152 | 631 500 | 0.006  | 212 | 887 300 | 0.000  |
| 35  | 112,000 | 0.020  | 94  | 230.400 | 0.010  | 153 | 636,900 | 0.000  | 212 | 888 200 | 0.000  |
| 27  | 114 100 | 0.045  | 06  | 230.300 | 11 216 | 154 | 647 200 | 0.000  | 213 | 807.800 | 0.000  |
| 20  | 115 100 | 0.040  | 90  | 240.000 | 0.100  | 155 | 649.000 | 0.000  | 214 | 808 700 | 0.000  |
| 30  | 115.100 | 1.109  | 97  | 241.000 | 2.130  | 100 | 646.000 | 0.000  | 215 | 002.000 | 0.000  |
| 39  | 116.100 | 0.097  | 98  | 242.000 | 0.195  | 157 | 650.700 | 0.000  | 210 | 903.800 | 0.001  |
| 40  | 118.200 | 0.010  | 99  | 263.300 | 0.006  | 158 | 660.900 | 0.001  | 217 | 918.300 | 0.000  |
| 41  | 119.100 | 0.023  | 100 | 266.800 | 0.031  | 159 | 663.500 | 0.002  | 218 | 937.600 | 0.000  |
| 42  | 120.100 | 0.552  | 101 | 291.300 | 0.000  | 160 | 669.900 | 0.000  | 219 | 939.800 | 0.000  |
| 43  | 121.000 | 33.721 | 102 | 299.600 | 0.010  | 161 | 673.900 | 0.000  | 220 | 941.800 | 0.001  |
| 44  | 122.000 | 2.510  | 103 | 399.900 | 0.001  | 162 | 678.700 | 0.004  | 221 | 944.000 | 0.001  |
| 45  | 123.100 | 0.065  | 104 | 402.900 | 0.000  | 163 | 682.100 | 0.000  | 222 | 946.300 | 0.001  |
| 46  | 125.700 | 0.063  | 105 | 404.300 | 0.006  | 164 | 687.700 | 0.001  | 223 | 948.000 | 0.001  |
| 47  | 127.100 | 0.020  | 106 | 411.000 | 0.000  | 165 | 692.400 | 0.000  | 224 | 948.800 | 0.001  |
| 48  | 137.900 | 0.012  | 107 | 411.900 | 0.000  | 166 | 694.400 | 0.001  | 225 | 961.400 | 0.000  |
| 49  | 139.100 | 0.550  | 108 | 413.000 | 0.000  | 167 | 704.200 | 0.001  | 226 | 965.100 | 0.000  |
| 50  | 140.000 | 0.184  | 109 | 413.700 | 0.000  | 168 | 713.800 | 0.000  | 227 | 965.900 | 0.017  |
| 51  | 141.000 | 1.278  | 110 | 421.300 | 0.000  | 169 | 715.000 | 0.000  | 228 | 967.400 | 0.000  |
| 52  | 142.000 | 0.152  | 111 | 423.900 | 0.002  | 170 | 717.700 | 0.000  | 229 | 969.300 | 0.000  |
| 53  | 142.800 | 0.000  | 112 | 432.600 | 0.000  | 171 | 719.400 | 0.000  | 230 | 979.200 | 0.015  |
| 54  | 144.000 | 0.000  | 113 | 433.900 | 0.000  | 172 | 721.400 | 0.000  | 231 | 982.700 | 0.003  |
| 55  | 146.900 | 0.033  | 114 | 434.600 | 0.000  | 173 | 725.300 | 0.000  | 232 | 992.300 | 0.001  |
| 56  | 149.900 | 0.068  | 115 | 436.600 | 0.000  | 174 | 726.300 | 0.000  | ·   |         |        |
| 57  | 151.000 | 0.217  | 116 | 441.000 | 0.000  | 175 | 746.500 | 0.000  |     |         |        |
| 58  | 152,000 | 0.417  | 117 | 442,900 | 0.001  | 176 | 748.100 | 0.000  |     |         |        |
| 59  | 152,900 | 0.200  | 118 | 463 100 | 0.000  | 177 | 755 300 | 0.001  |     |         |        |

Figura 137 – Espectro de Massas; Reação Isopropoxibenzeno com *AuCl*<sub>3</sub>; T.R.= 17.9; p-isopropoxibenzofenona (continuação)

# B.3 N,N-dimetilanilina

## **B.3.1** ZnO



Figura 138 – Cromatograma da reação N,N-dimetilanilina com ZnO

| No. | Peak Name               | tR (min) | Area (%) | Base Peak Mass |
|-----|-------------------------|----------|----------|----------------|
| 1   | Ácido Benzoico          | 7.566    | 8.475    | 105.000        |
| 2   | N-metil-fenil-benzamida | 16.248   | 3.050    | 105.000        |
| 3   | unknown                 | 17.634   | 83.731   | 105.000        |
| 4   | unknown                 | 17.966   | 4.743    | 135.000        |



## N,N-dimetilanilina com ZnO

Figura 140 - Espectro de Massas; Reação N,N-dimetilanilina com ZnO; T.R.=7.6; Ácido benzóico

| m/z    | TIC(%)                                                                                                                                                                                                                                                                                                                                                                                                     | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m/z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIC(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m/z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TIC(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m/z                                                    | TIC(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 49.900 | 1.479                                                                                                                                                                                                                                                                                                                                                                                                      | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 77.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 131.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 211.900                                                | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50.900 | 3.086                                                                                                                                                                                                                                                                                                                                                                                                      | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 133.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 218.800                                                | 0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51.900 | 0.481                                                                                                                                                                                                                                                                                                                                                                                                      | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 94.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 135.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 231.200                                                | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 52.900 | 0.194                                                                                                                                                                                                                                                                                                                                                                                                      | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 95.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 136.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 232.200                                                | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 53.900 | 0.010                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 146.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 234.700                                                | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 54.900 | 0.278                                                                                                                                                                                                                                                                                                                                                                                                      | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 102.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 236.000                                                | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56.100 | 0.020                                                                                                                                                                                                                                                                                                                                                                                                      | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 103.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 249.900                                                | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 57.000 | 0.055                                                                                                                                                                                                                                                                                                                                                                                                      | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 104.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 151.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 250.800                                                | 0.154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 59.000 | 0.005                                                                                                                                                                                                                                                                                                                                                                                                      | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 153.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 251.700                                                | 0.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60.100 | 0.025                                                                                                                                                                                                                                                                                                                                                                                                      | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 106.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 154.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 252.900                                                | 0.154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60.900 | 2.139                                                                                                                                                                                                                                                                                                                                                                                                      | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 155.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 253.800                                                | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 62.000 | 0.129                                                                                                                                                                                                                                                                                                                                                                                                      | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 162.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 265.800                                                | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 62.900 | 0.144                                                                                                                                                                                                                                                                                                                                                                                                      | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 162.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 266.800                                                | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 63.900 | 0.020                                                                                                                                                                                                                                                                                                                                                                                                      | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 164.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 280.800                                                | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 64.900 | 0.228                                                                                                                                                                                                                                                                                                                                                                                                      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 113.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 165.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 282.000                                                | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 66.000 | 0.174                                                                                                                                                                                                                                                                                                                                                                                                      | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 115.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 168.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 282.700                                                | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 66.800 | 0.025                                                                                                                                                                                                                                                                                                                                                                                                      | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 169.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 284.400                                                | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 69.100 | 0.060                                                                                                                                                                                                                                                                                                                                                                                                      | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 121.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 311.600                                                | 0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 69.800 | 0.119                                                                                                                                                                                                                                                                                                                                                                                                      | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34.709                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 191.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 354.500                                                | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 71.600 | 0.025                                                                                                                                                                                                                                                                                                                                                                                                      | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 123.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 194.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 363.600                                                | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 72.900 | 0.069                                                                                                                                                                                                                                                                                                                                                                                                      | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 124.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 196.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 384.700                                                | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 73.900 | 0.367                                                                                                                                                                                                                                                                                                                                                                                                      | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 199.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 742.700                                                | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 74.900 | 0.198                                                                                                                                                                                                                                                                                                                                                                                                      | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 201.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 75.900 | 0.293                                                                                                                                                                                                                                                                                                                                                                                                      | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 129.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 207.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 76.900 | 3.419                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 131.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 209.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | m/z           49.900           50.900           51.900           52.900           53.900           54.900           56.100           57.000           59.000           60.100           60.900           62.900           63.900           64.900           66.000           69.100           69.800           71.600           72.900           73.900           74.900           75.900           76.900 | m/z         TIC(%)           49.900         1.479           50.900         3.086           51.900         0.481           52.900         0.194           53.900         0.010           54.900         0.278           56.100         0.020           57.000         0.055           59.000         0.025           60.900         2.139           62.000         0.129           62.900         0.144           63.900         0.228           66.000         0.174           66.800         0.025           69.100         0.060           69.800         0.119           71.600         0.025           72.900         0.367           73.900         0.293           76.900         3.419 | m/z         TIC(%)         No.           49.900         1.479         26           50.900         3.086         27           51.900         0.481         28           52.900         0.194         29           53.900         0.278         31           56.100         0.020         32           57.000         0.055         33           59.000         0.005         34           60.100         0.025         35           60.900         2.139         36           62.000         0.129         37           62.900         0.144         38           63.900         0.228         40           66.000         0.174         41           66.800         0.025         42           69.100         0.060         43           69.800         0.119         44           71.600         0.025         45           72.900         0.669         46           73.900         0.367         47           74.900         0.198         48           75.900         0.293         49           76.900         3.419 | m/z         TIC(%)         No.         m/z           49.900         1.479         26         77.900           50.900         3.086         27         79.000           51.900         0.481         28         94.000           52.900         0.194         29         95.100           53.900         0.0194         29         95.100           54.900         0.278         31         102.000           56.100         0.020         32         103.000           57.000         0.055         33         104.000           59.000         0.025         35         106.000           60.100         0.025         35         106.000           62.000         0.129         37         108.000           62.900         0.144         38         109.000           63.900         0.228         40         113.900           66.800         0.025         42         118.900           68.900         0.119         44         122.000           71.600         0.025         45         123.000           72.900         0.069         46         124.000           73.900         0.367 | m/zTIC(%)No. $m/z$ TIC(%)49.9001.4792677.9000.36750.9003.0862779.0000.02551.9000.4812894.0000.00552.9000.1942995.1000.02053.9000.01030100.9000.02054.9000.27831102.0000.14957.0000.05533104.0000.31359.0000.00534105.00041.87560.1000.02535106.0003.43960.9002.13936107.0000.22362.9000.14438109.0000.06563.9000.02039110.0000.03564.9000.22840113.9000.01066.0000.17441115.3000.03566.8000.02542118.9000.04069.8000.11944122.00034.70971.6000.02545123.0002.76472.9000.06946124.0000.19873.9000.29349129.8000.03076.9003.41950131.0000.060 | m/zTIC(%)No. $m/z$ TIC(%)No.49.9001.4792677.9000.3675150.9003.0862779.0000.0255251.9000.4812894.0000.0055352.9000.1942995.1000.0205453.9000.01030100.9000.0205554.9000.27831102.0000.0555656.1000.02032103.0000.1495757.0000.05533104.0000.3135859.0000.00534105.00041.8755960.1000.02535106.0003.4396060.9002.13936107.0000.2236162.0000.12937108.0000.0656262.9000.14438109.0000.0696363.9000.02039110.0000.0356464.9000.22840113.9000.0106566.0000.17441115.3000.0356669.8000.11944122.00034.7096971.6000.02545123.0002.7647072.9000.06946124.0000.1987174.9000.19848128.9000.0307475.9000.29349129.8000.0307476.9003.41950131.000 <td>m/zTIC(%)No.<math>m/z</math>TIC(%)No.<math>m/z</math>49.9001.4792677.9000.36751131.90050.9003.0862779.0000.02552133.20051.9000.4812894.0000.00553135.10052.9000.1942995.1000.02054136.10053.9000.01030100.9000.02055146.10054.9000.27831102.0000.05556149.10056.1000.02032103.0000.14957149.80057.0000.05533104.0000.31358151.20060.1000.02535106.0003.43960154.00060.9002.13936107.0000.22361155.00062.9000.14438109.0000.06562162.00062.9000.17441115.3000.03564164.00064.9000.22840113.9000.01065165.00068.0000.02542118.9000.04067169.90071.6000.02545123.0002.76470194.90072.9000.06946124.0000.19871196.80073.9000.36747125.9000.03074207.80074.9000.98349129.8000.03074207.90074.9000.984</td> <td>m/zTIC(%)No.<math>m/z</math>TIC(%)No.<math>m/z</math>TIC(%)49.9001.4792677.9000.36751131.9000.01550.9003.0862779.0000.02552133.2000.07951.9000.4812894.0000.00553135.1000.45252.9000.1942995.1000.02054136.1000.01553.9000.01030100.9000.02055146.1000.02054.9000.27831102.0000.05556149.1000.02556.1000.00032103.0000.14957149.8000.02557.0000.05533104.0000.31358151.2000.03059.0000.00534105.00041.87559153.1000.00560.1000.02235106.0003.43960155.0000.02562.9000.14438109.0000.06562162.0000.02563.9000.02039110.0000.03564164.0000.01064.9000.22840113.9000.04067169.9000.04069.8000.17441115.3000.03566168.0000.08469.8000.11944122.00034.70969191.0000.02071.6000.02545123.0002.76470194.9000.030<td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td>m/z         TIC(%)         No.         m/z         TIC(%)         TIC(%)         TIC(%)         TIC(%)         No.         m/z         TIC(%)         TIC(%)</td></td> | m/zTIC(%)No. $m/z$ TIC(%)No. $m/z$ 49.9001.4792677.9000.36751131.90050.9003.0862779.0000.02552133.20051.9000.4812894.0000.00553135.10052.9000.1942995.1000.02054136.10053.9000.01030100.9000.02055146.10054.9000.27831102.0000.05556149.10056.1000.02032103.0000.14957149.80057.0000.05533104.0000.31358151.20060.1000.02535106.0003.43960154.00060.9002.13936107.0000.22361155.00062.9000.14438109.0000.06562162.00062.9000.17441115.3000.03564164.00064.9000.22840113.9000.01065165.00068.0000.02542118.9000.04067169.90071.6000.02545123.0002.76470194.90072.9000.06946124.0000.19871196.80073.9000.36747125.9000.03074207.80074.9000.98349129.8000.03074207.90074.9000.984 | m/zTIC(%)No. $m/z$ TIC(%)No. $m/z$ TIC(%)49.9001.4792677.9000.36751131.9000.01550.9003.0862779.0000.02552133.2000.07951.9000.4812894.0000.00553135.1000.45252.9000.1942995.1000.02054136.1000.01553.9000.01030100.9000.02055146.1000.02054.9000.27831102.0000.05556149.1000.02556.1000.00032103.0000.14957149.8000.02557.0000.05533104.0000.31358151.2000.03059.0000.00534105.00041.87559153.1000.00560.1000.02235106.0003.43960155.0000.02562.9000.14438109.0000.06562162.0000.02563.9000.02039110.0000.03564164.0000.01064.9000.22840113.9000.04067169.9000.04069.8000.17441115.3000.03566168.0000.08469.8000.11944122.00034.70969191.0000.02071.6000.02545123.0002.76470194.9000.030 <td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> <td>m/z         TIC(%)         No.         m/z         TIC(%)         TIC(%)         TIC(%)         TIC(%)         No.         m/z         TIC(%)         TIC(%)</td> | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | m/z         TIC(%)         No.         m/z         TIC(%)         TIC(%)         TIC(%)         TIC(%)         No.         m/z         TIC(%)         TIC(%) |

Figura 141 – Espectro de Massas; Reação N,N-dimetilanilina com ZnO; T.R.=7.6; Ácido benzóico (continuação)

| Formula C H NC  | ) <b>FW</b> 21 | 1.2591         |               |                |                 |             |     |
|-----------------|----------------|----------------|---------------|----------------|-----------------|-------------|-----|
| Count           | 142            | Data Type      | Centroid      | Date           | 28 Mar 19 08:57 | 'pm         |     |
| File Name       | BEATRIZ2_3-28  | 3-2019_BRUTO_M | E2NAR_ZNO_1_C | Centroid       |                 | Inlet Model | GC  |
| Mass Spec Model | Varian Saturn  | Plot Type      | Stick         | Retention Time | 16.248          | Scan        | 619 |
| TIC             | 209.76         | Total Signal   | 29352         |                |                 |             |     |
|                 |                |                |               |                |                 |             |     |

## N,N-dimetilanilina com ZnO

BEATRIZ2\_3-28-2019\_BRUTO\_ME2NAR021\_CENTROID.ESP



Figura 142 – Espectro de Massas; Reação N,N-dimetilanilina com ZnO; T.R.= 16.2; N-metil-fenil-benzamida

| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 49.900  | 0.330  | 37  | 108.000 | 0.055  | 73  | 152.000 | 0.504  | 109 | 212.000 | 1.659  |
| 2   | 50.900  | 1.956  | 38  | 109.100 | 0.170  | 74  | 153.100 | 0.072  | 110 | 212.900 | 0.153  |
| 3   | 51.900  | 0.266  | 39  | 110.100 | 0.034  | 75  | 154.000 | 0.041  | 111 | 214.100 | 0.003  |
| 4   | 53.000  | 0.020  | 40  | 111.100 | 0.058  | 76  | 155.100 | 0.007  | 112 | 217.000 | 0.007  |
| 5   | 54.000  | 0.037  | 41  | 112.900 | 0.051  | 77  | 156.100 | 0.003  | 113 | 217.900 | 0.007  |
| 6   | 54.900  | 0.211  | 42  | 115.000 | 0.170  | 78  | 161.100 | 0.017  | 114 | 218.800 | 0.051  |
| 7   | 56.900  | 0.109  | 43  | 116.000 | 0.010  | 79  | 162.200 | 0.007  | 115 | 223.900 | 0.027  |
| 8   | 57.800  | 0.007  | 44  | 118.000 | 5.696  | 80  | 164.000 | 0.044  | 116 | 224.800 | 0.048  |
| 9   | 59.800  | 0.024  | 45  | 119.000 | 0.879  | 81  | 164.900 | 0.170  | 117 | 226.900 | 0.082  |
| 10  | 61.000  | 0.494  | 46  | 120.000 | 0.072  | 82  | 165.900 | 0.143  | 118 | 228.900 | 0.007  |
| 11  | 61.900  | 0.174  | 47  | 122.000 | 1.278  | 83  | 167.000 | 0.351  | 119 | 231.900 | 0.024  |
| 12  | 63.000  | 0.218  | 48  | 123.100 | 0.095  | 84  | 168.000 | 0.048  | 120 | 232.900 | 0.020  |
| 13  | 64.000  | 0.106  | 49  | 124.300 | 0.003  | 85  | 169.100 | 0.112  | 121 | 234.900 | 0.010  |
| 14  | 65.000  | 0.112  | 50  | 125.000 | 0.017  | 86  | 176.900 | 0.020  | 122 | 236.000 | 0.007  |
| 15  | 66.100  | 0.014  | 51  | 125.700 | 0.007  | 87  | 178.000 | 0.048  | 123 | 239.800 | 0.003  |
| 16  | 67.100  | 0.010  | 52  | 127.100 | 0.160  | 88  | 179.000 | 0.075  | 124 | 242.800 | 0.010  |
| 17  | 67.900  | 0.010  | 53  | 128.000 | 0.055  | 89  | 180.100 | 0.334  | 125 | 244.800 | 0.007  |
| 18  | 68.900  | 0.017  | 54  | 129.400 | 0.061  | 90  | 180.900 | 0.082  | 126 | 247.000 | 0.007  |
| 19  | 71.200  | 0.007  | 55  | 131.100 | 0.037  | 91  | 182.000 | 0.010  | 127 | 249.400 | 0.003  |
| 20  | 74.000  | 0.078  | 56  | 132.000 | 0.078  | 92  | 184.100 | 0.099  | 128 | 253.000 | 0.003  |
| 21  | 74.900  | 0.031  | 57  | 133.000 | 0.037  | 93  | 185.000 | 0.092  | 129 | 264.900 | 0.014  |
| 22  | 76.000  | 0.143  | 58  | 134.000 | 0.102  | 94  | 191.000 | 0.109  | 130 | 281.000 | 0.136  |
| 23  | 76.900  | 4.739  | 59  | 135.000 | 0.191  | 95  | 192.100 | 0.034  | 131 | 301.400 | 0.007  |
| 24  | 77.900  | 0.341  | 60  | 136.000 | 0.048  | 96  | 193.900 | 0.041  | 132 | 354.700 | 0.003  |
| 25  | 79.000  | 0.055  | 61  | 137.100 | 0.010  | 97  | 195.100 | 0.245  | 133 | 400.600 | 0.037  |
| 26  | 80.000  | 0.017  | 62  | 139.000 | 0.181  | 98  | 196.000 | 0.208  | 134 | 441.000 | 0.014  |
| 27  | 80.900  | 0.075  | 63  | 140.100 | 0.198  | 99  | 197.000 | 0.566  | 135 | 443.200 | 0.003  |
| 28  | 94.000  | 0.014  | 64  | 141.100 | 0.075  | 100 | 197.800 | 0.024  | 136 | 462.900 | 0.003  |
| 29  | 97.000  | 0.017  | 65  | 142.100 | 0.007  | 101 | 201.900 | 0.027  | 137 | 694.200 | 0.003  |
| 30  | 101.100 | 0.020  | 66  | 142.900 | 0.003  | 102 | 202.900 | 0.007  | 138 | 825.000 | 0.027  |
| 31  | 102.100 | 0.014  | 67  | 144.000 | 0.007  | 103 | 204.100 | 0.007  | 139 | 846.700 | 0.003  |
| 32  | 103.100 | 0.371  | 68  | 145.700 | 0.048  | 104 | 207.000 | 0.337  | 140 | 847.900 | 0.003  |
| 33  | 104.100 | 1.990  | 69  | 147.100 | 0.037  | 105 | 207.900 | 0.034  | 141 | 862.300 | 0.003  |
| 34  | 105.000 | 47.673 | 70  | 148.200 | 0.027  | 106 | 209.000 | 0.382  | 142 | 893.500 | 0.003  |
| 35  | 106.000 | 5.032  | 71  | 149.100 | 0.092  | 107 | 210.000 | 7.884  |     |         |        |
| 36  | 107.000 | 0.422  | 72  | 151.000 | 0.174  | 108 | 211.000 | 10.037 |     |         |        |

Figura 143 – Espectro de Massas; Reação N,N-dimetilanilina com *ZnO*; T.R.= 16.2; N-metil-fenil-benzamida (continuação)

# **B.3.2** Co(acac)<sub>2</sub>



Figura 144 – Cromatograma da reação N,N-dimetilanilina com Co(acac)<sub>2</sub>



N,N-dimetilanilina com Co(acac)2

Figura 145 – Espectro de Massas; Reação N,N-dimetilanilina com Co(acac)<sub>2</sub>; T.R.=7.5; Ácido benzóico

| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.000  | 1.958  | 47  | 105.200 | 37.118 | 93  | 330.800 | 0.001  | 139 | 686.300 | 0.001  |
| 2   | 51.000  | 3.798  | 48  | 106.200 | 2.349  | 94  | 354.600 | 0.001  | 140 | 700.300 | 0.001  |
| 3   | 52.000  | 0.525  | 49  | 107.200 | 0.172  | 95  | 355.900 | 0.001  | 141 | 703.000 | 0.001  |
| 4   | 53.000  | 0.250  | 50  | 108.200 | 0.001  | 96  | 356.500 | 0.001  | 142 | 717.000 | 0.001  |
| 5   | 54.000  | 0.029  | 51  | 119.200 | 0.006  | 97  | 357.900 | 0.001  | 143 | 717.700 | 0.001  |
| 6   | 55.000  | 0.070  | 52  | 120.300 | 0.001  | 98  | 382.000 | 0.001  | 144 | 724.900 | 0.001  |
| 7   | 56.000  | 0.001  | 53  | 122.000 | 30.144 | 99  | 383.000 | 0.001  | 145 | 725.700 | 0.001  |
| 8   | 60.100  | 0.011  | 54  | 123.000 | 2.031  | 100 | 384.000 | 0.001  | 146 | 733.100 | 0.001  |
| 9   | 61.100  | 0.271  | 55  | 124.000 | 0.155  | 101 | 392.100 | 0.001  | 147 | 739.000 | 0.001  |
| 10  | 62.000  | 0.106  | 56  | 124.900 | 0.006  | 102 | 393.500 | 0.001  | 148 | 739.700 | 0.001  |
| 11  | 63.100  | 0.255  | 57  | 132.900 | 0.001  | 103 | 398.500 | 0.001  | 149 | 740.700 | 0.001  |
| 12  | 64.100  | 0.051  | 58  | 136.000 | 0.001  | 104 | 400.100 | 0.001  | 150 | 741.500 | 0.001  |
| 13  | 65.100  | 0.443  | 59  | 139.200 | 0.001  | 105 | 401.000 | 0.001  | 151 | 774.300 | 0.001  |
| 14  | 66.100  | 0.455  | 60  | 140.800 | 0.001  | 106 | 413.800 | 0.001  | 152 | 775.400 | 0.001  |
| 15  | 67.200  | 0.020  | 61  | 150.000 | 0.006  | 107 | 415.700 | 0.001  | 153 | 776.100 | 0.001  |
| 16  | 68.000  | 0.021  | 62  | 175.200 | 0.001  | 108 | 453.800 | 0.001  | 154 | 790.800 | 0.001  |
| 17  | 69.200  | 0.008  | 63  | 209.700 | 0.001  | 109 | 470.300 | 0.001  | 155 | 794.400 | 0.001  |
| 18  | 70.100  | 0.001  | 64  | 211.200 | 0.001  | 110 | 472.200 | 0.001  | 156 | 811.400 | 0.001  |
| 19  | 71.100  | 0.001  | 65  | 212.600 | 0.001  | 111 | 474.000 | 0.001  | 157 | 828.600 | 0.001  |
| 20  | 72.000  | 0.006  | 66  | 217.400 | 0.001  | 112 | 491.300 | 0.001  | 158 | 831.800 | 0.001  |
| 21  | 73.100  | 0.273  | 67  | 218.600 | 0.001  | 113 | 494.600 | 0.001  | 159 | 832.700 | 0.001  |
| 22  | 74.100  | 1.364  | 68  | 227.000 | 0.001  | 114 | 507.500 | 0.001  | 160 | 848.500 | 0.001  |
| 23  | 75.100  | 0.610  | 69  | 228.000 | 0.001  | 115 | 508.400 | 0.001  | 161 | 856.000 | 0.001  |
| 24  | 76.100  | 0.792  | 70  | 232.800 | 0.001  | 116 | 509.300 | 0.001  | 162 | 871.100 | 0.001  |
| 25  | 77.000  | 14.497 | 71  | 234.900 | 0.001  | 117 | 522.900 | 0.001  | 163 | 877.500 | 0.001  |
| 26  | 78.000  | 1.257  | 72  | 250.800 | 0.001  | 118 | 541.600 | 0.001  | 164 | 878.700 | 0.001  |
| 27  | 79.000  | 0.182  | 73  | 251.500 | 0.001  | 119 | 542.300 | 0.001  | 165 | 879.500 | 0.001  |
| 28  | 80.000  | 0.011  | 74  | 254.700 | 0.001  | 120 | 555.400 | 0.001  | 166 | 887.500 | 0.001  |
| 29  | 81.000  | 0.007  | 75  | 257.800 | 0.001  | 121 | 559.000 | 0.001  | 167 | 888.400 | 0.001  |
| 30  | 82.000  | 0.002  | 76  | 271.900 | 0.001  | 122 | 570.900 | 0.001  | 168 | 889.400 | 0.001  |
| 20  | 85.000  | 0.001  | 70  | 272.000 | 0.001  | 123 | 572.600 | 0.001  | 170 | 902.200 | 0.001  |
| 32  | 85.000  | 0.001  | 70  | 274.300 | 0.001  | 124 | 573.000 | 0.001  | 170 | 909.900 | 0.001  |
| 34  | 87.000  | 0.001  | 80  | 282,000 | 0.001  | 120 | 603 800 | 0.001  | 172 | 920.400 | 0.001  |
| 35  | 89.000  | 0.002  | 81  | 284 500 | 0.001  | 120 | 604 900 | 0.001  | 173 | 936 400 | 0.001  |
| 36  | 89 900  | 0.005  | 82  | 285 600 | 0.001  | 127 | 616 700 | 0.001  | 174 | 949 200 | 0.001  |
| 37  | 91 100  | 0.019  | 83  | 286 400 | 0.001  | 129 | 619 300 | 0.001  | 175 | 958 400 | 0.001  |
| 38  | 92 100  | 0.018  | 84  | 301 900 | 0.001  | 130 | 620,200 | 0.001  | 176 | 959 100 | 0.001  |
| 39  | 93 100  | 0.047  | 85  | 302 600 | 0.001  | 131 | 621 800 | 0.001  | 177 | 975 300 | 0.001  |
| 40  | 94 100  | 0.403  | 86  | 304 100 | 0.001  | 132 | 633 000 | 0.001  | 178 | 976.000 | 0.001  |
| 41  | 95,100  | 0.090  | 87  | 304.800 | 0.001  | 133 | 653.000 | 0.001  | 179 | 990.600 | 0.001  |
| 42  | 96,100  | 0.006  | 88  | 306.300 | 0.001  | 134 | 654.000 | 0.001  | 180 | 991.300 | 0.001  |
| 43  | 99,000  | 0.001  | 89  | 307.000 | 0.001  | 135 | 668,100 | 0.001  |     | 501.000 | 0.001  |
| 44  | 100 900 | 0.001  | 90  | 321 100 | 0.001  | 136 | 670,600 | 0.001  |     |         |        |
| 45  | 102.900 | 0.001  | 91  | 321.800 | 0.001  | 137 | 683,700 | 0.001  |     |         |        |
| 46  | 103.600 | 0.007  | 92  | 329,100 | 0.001  | 138 | 684,500 | 0.001  |     |         |        |
|     |         | 0.007  | -   | 52000   | 0.001  |     | 20.000  |        |     |         |        |

Figura 146 – Espectro de Massas; Reação N,N-dimetilanilina com Co(acac)<sub>2</sub>; T.R.=7.5; Ácido benzóico (continuação)

| Formula C H NC  | <b>FW</b> 21   | 1.2591         |               |                |                 |                           |     |
|-----------------|----------------|----------------|---------------|----------------|-----------------|---------------------------|-----|
| Count           | 317            | Data Type      | Centroid      | Date           | 12 Apr 19 12:54 | l pm                      |     |
| File Name       | 1-4-12-2019_BF | RUTO_ME2NAR_CO | O(ACAC)2_1_Ce | ntroid         |                 | Inlet Model               | GC  |
| Mass Spec Model | Varian Saturn  | Plot Type      | Stick         | Retention Time | 15.308          | Scan                      | 411 |
| TIC             | 267.05         | Total Signal   | 1844386       |                |                 |                           |     |
|                 |                |                |               |                |                 | CH <sub>3</sub><br>N<br>O |     |

N,N-dimetilanilina com Co(acac)2

1-4-12-2019\_BRUTO\_ME2NAR\_CO(ACA0521\_1\_CENTROID.ESP



Figura 147 – Espectro de Massas; Reação N,N-dimetilanilina com Co(acac)<sub>2</sub>; T.R.= 15.3; N-metil-fenil-benzamida

| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 50.200  | 0.519  | 69  | 147.900 | 0.000  | 137 | 409.700 | 0.001  | 205 | 599.500 | 0.001  |
| 2   | 51.200  | 2.472  | 70  | 150.400 | 0.025  | 138 | 412.900 | 0.001  | 206 | 600.200 | 0.001  |
| 3   | 52.200  | 0.160  | 71  | 151.400 | 0.108  | 139 | 414.000 | 0.001  | 207 | 601.200 | 0.001  |
| 4   | 53.200  | 0.090  | 72  | 152.400 | 0.259  | 140 | 415.400 | 0.001  | 208 | 602.800 | 0.001  |
| 5   | 54.300  | 0.001  | 73  | 153.500 | 0.062  | 141 | 416.500 | 0.001  | 209 | 604.200 | 0.001  |
| 6   | 55.300  | 0.001  | 74  | 154.400 | 0.007  | 142 | 418.400 | 0.001  | 210 | 613.000 | 0.001  |
| 7   | 61.300  | 0.001  | 75  | 158.700 | 0.001  | 143 | 419.800 | 0.001  | 211 | 615.300 | 0.001  |
| 8   | 62.300  | 0.046  | 76  | 160.000 | 0.001  | 144 | 431.100 | 0.000  | 212 | 621.500 | 0.001  |
| 9   | 63.300  | 0.291  | 77  | 162.300 | 0.001  | 145 | 433.800 | 0.001  | 213 | 629.600 | 0.001  |
| 10  | 64.300  | 0.128  | 78  | 164.600 | 0.014  | 146 | 435.200 | 0.001  | 214 | 633.400 | 0.001  |
| 11  | 65.400  | 0.100  | 79  | 165.600 | 0.014  | 147 | 442.900 | 0.001  | 215 | 635.100 | 0.000  |
| 12  | 66.400  | 0.025  | 80  | 166.600 | 0.127  | 148 | 446.500 | 0.001  | 216 | 637.900 | 0.001  |
| 13  | 67.500  | 0.000  | 81  | 167.500 | 0.279  | 149 | 449.700 | 0.001  | 217 | 638.800 | 0.001  |
| 14  | 72.100  | 0.001  | 82  | 168.500 | 0.035  | 150 | 450.500 | 0.001  | 218 | 648.700 | 0.001  |
| 15  | 73.600  | 0.008  | 83  | 169.500 | 0.009  | 151 | 452.000 | 0.001  | 219 | 652.300 | 0.001  |
| 16  | 74.500  | 0.181  | 84  | 170.200 | 0.001  | 152 | 455.400 | 0.001  | 220 | 653.900 | 0.001  |
| 17  | 75.500  | 0.156  | 85  | 176.400 | 0.001  | 153 | 456.600 | 0.000  | 221 | 662.800 | 0.001  |
| 18  | 76.500  | 0.460  | 86  | 177.100 | 0.001  | 154 | 466.400 | 0.001  | 222 | 665.300 | 0.001  |
| 19  | 77.400  | 19.722 | 87  | 178.700 | 0.062  | 155 | 468.600 | 0.001  | 223 | 670.500 | 0.001  |
| 20  | 78.400  | 1.490  | 88  | 180.600 | 0.121  | 156 | 469.800 | 0.001  | 224 | 674.000 | 0.001  |
| 21  | 79.400  | 0.633  | 89  | 181.600 | 0.035  | 157 | 470.600 | 0.001  | 225 | 675.200 | 0.001  |
| 22  | 80.300  | 0.008  | 90  | 182.600 | 0.036  | 158 | 473.700 | 0.001  | 226 | 680.300 | 0.001  |
| 23  | 84.000  | 0.000  | 91  | 183.500 | 0.001  | 159 | 476.600 | 0.001  | 227 | 682.600 | 0.001  |
| 24  | 87.500  | 0.003  | 92  | 184.600 | 0.043  | 160 | 487.900 | 0.001  | 228 | 692.700 | 0.001  |
| 25  | 88.600  | 0.001  | 93  | 185.200 | 0.001  | 161 | 488.900 | 0.001  | 229 | 695.000 | 0.001  |
| 20  | 89.500  | 0.045  | 94  | 191.100 | 0.001  | 162 | 491.300 | 0.001  | 230 | 702,000 | 0.001  |
| 27  | 90.400  | 0.017  | 95  | 193.800 | 0.004  | 103 | 496.600 | 0.001  | 231 | 702.900 | 0.001  |
| 28  | 91.500  | 0.131  | 96  | 195.700 | 0.157  | 164 | 497.800 | 0.001  | 232 | 707.200 | 0.001  |
| 29  | 92.500  | 0.009  | 97  | 196.700 | 0.022  | 105 | 498.700 | 0.001  | 233 | 708.400 | 0.001  |
| 30  | 93.400  | 0.009  | 90  | 196.600 | 0.001  | 100 | 500.500 | 0.001  | 234 | 709.300 | 0.001  |
| 31  | 94.800  | 0.001  | 99  | 200.000 | 0.000  | 167 | 505.100 | 0.001  | 235 | 711.300 | 0.001  |
| 32  | 95.500  | 0.145  | 100 | 201.200 | 0.001  | 108 | 506.100 | 0.001  | 230 | 712.400 | 0.001  |
| 24  | 97.200  | 0.001  | 107 | 208.900 | 17 359 | 170 | 507.900 | 0.001  | 237 | 719.300 | 0.001  |
| 34  | 96.400  | 0.001  | 102 | 211.000 | 2 363  | 170 | 508.600 | 0.001  | 230 | 720.000 | 0.001  |
| 36  | 102 100 | 0.001  | 103 | 213.000 | 0.176  | 172 | 514 100 | 0.001  | 239 | 721.200 | 0.001  |
| 37  | 102,100 | 0.009  | 105 | 213 900 | 0.010  | 172 | 515 700 | 0.000  | 240 | 725 300 | 0.001  |
| 38  | 103.600 | 0.000  | 106 | 216.000 | 0.010  | 174 | 516 800 | 0.000  | 242 | 730.600 | 0.001  |
| 30  | 105.000 | 37 446 | 107 | 217,800 | 0.001  | 175 | 524 200 | 0.001  | 242 | 731 400 | 0.001  |
| 40  | 106.300 | 3 071  | 108 | 222 600 | 0.001  | 176 | 525 100 | 0.001  | 240 | 734 500 | 0.001  |
| 41  | 107.300 | 0.203  | 109 | 225 200 | 0.001  | 177 | 526 400 | 0.001  | 245 | 735 800 | 0.001  |
| 42  | 109,100 | 0.001  | 110 | 233.000 | 0.001  | 178 | 527,900 | 0.001  | 246 | 740.000 | 0.001  |
| 43  | 111.500 | 0.001  | 111 | 234.200 | 0.001  | 179 | 530,400 | 0.001  | 247 | 741.000 | 0.001  |
| 44  | 113 500 | 0.009  | 112 | 236 000 | 0.000  | 180 | 534 400 | 0.000  | 248 | 741 900 | 0.001  |
| 45  | 114.500 | 0.016  | 113 | 242.900 | 0.001  | 181 | 535,500 | 0.001  | 249 | 742.900 | 0.001  |
| 46  | 115.400 | 0.150  | 114 | 244.400 | 0.001  | 182 | 538.000 | 0.001  | 250 | 750.200 | 0.001  |
| 47  | 116.500 | 0.017  | 115 | 247.100 | 0.001  | 183 | 543.700 | 0.001  | 251 | 754.500 | 0.001  |
| 48  | 117.700 | 0.006  | 116 | 252.500 | 0.001  | 184 | 545.200 | 0.001  | 252 | 758.700 | 0.000  |
| 49  | 118.300 | 9.523  | 117 | 254.400 | 0.001  | 185 | 546.600 | 0.001  | 253 | 760.900 | 0.001  |
| 50  | 119.300 | 0.751  | 118 | 263.000 | 0.001  | 186 | 550.000 | 0.001  | 254 | 762.100 | 0.001  |
| 51  | 120.400 | 0.001  | 119 | 269.700 | 0.001  | 187 | 554.000 | 0.001  | 255 | 764.600 | 0.001  |
| 52  | 121.200 | 0.001  | 120 | 270.600 | 0.001  | 188 | 556.600 | 0.001  | 256 | 765.500 | 0.001  |
| 53  | 122.300 | 0.001  | 121 | 279.000 | 0.001  | 189 | 561.900 | 0.001  | 257 | 766.600 | 0.001  |
| 54  | 126.400 | 0.009  | 122 | 280.200 | 0.001  | 190 | 563.200 | 0.001  | 258 | 767.300 | 0.000  |
| 55  | 127.400 | 0.026  | 123 | 289.000 | 0.001  | 191 | 564.100 | 0.001  | 259 | 769.100 | 0.001  |
| 56  | 128.300 | 0.017  | 124 | 308.200 | 0.000  | 192 | 564.900 | 0.001  | 260 | 778.100 | 0.001  |
| 57  | 131.300 | 0.001  | 125 | 312.900 | 0.001  | 193 | 566.400 | 0.001  | 261 | 780.100 | 0.001  |
| 58  | 132.400 | 0.059  | 126 | 327.900 | 0.001  | 194 | 567.400 | 0.001  | 262 | 783.100 | 0.001  |
| 59  | 133.300 | 0.022  | 127 | 340.400 | 0.001  | 195 | 572.500 | 0.001  | 263 | 785.300 | 0.001  |
| 60  | 134.400 | 0.006  | 128 | 341.500 | 0.001  | 196 | 574.500 | 0.001  | 264 | 786.600 | 0.001  |
| 61  | 137.300 | 0.001  | 129 | 347.700 | 0.001  | 197 | 575.300 | 0.001  | 265 | 796.400 | 0.001  |
| 62  | 138.500 | 0.001  | 130 | 348.500 | 0.001  | 198 | 582.200 | 0.001  | 266 | 799.200 | 0.001  |
| 63  | 139.400 | 0.096  | 131 | 360.700 | 0.001  | 199 | 582.800 | 0.001  | 267 | 800.300 | 0.001  |
| 64  | 140.300 | 0.079  | 132 | 362.900 | 0.001  | 200 | 583.700 | 0.001  | 268 | 805.100 | 0.001  |
| 65  | 141.500 | 0.047  | 133 | 377.000 | 0.001  | 201 | 585.100 | 0.000  | 269 | 806.100 | 0.001  |
| 66  | 144.700 | 0.001  | 134 | 389.600 | 0.001  | 202 | 591.400 | 0.001  | 270 | 807.000 | 0.001  |
| 67  | 145.400 | 0.001  | 135 | 390.300 | 0.001  | 203 | 593.400 | 0.001  | 271 | 816.100 | 0.001  |
| 68  | 146.800 | 0.001  | 136 | 391.800 | 0.001  | 204 | 598.900 | 0.001  | 272 | 817.400 | 0.001  |

Figura 148 – Espectro de Massas; Reação N,N-dimetilanilina com Co(acac)<sub>2</sub>; T.R.= 15.3; N-metil-fenil-benzamida (continuação 1)

| No. | m/z     | TIC(%) |
|-----|---------|--------|
| 273 | 820.600 | 0.001  |
| 274 | 821.600 | 0.001  |
| 275 | 823.700 | 0.000  |
| 276 | 826.600 | 0.001  |
| 277 | 829.000 | 0.001  |
| 278 | 840.100 | 0.001  |
| 279 | 841.500 | 0.001  |
| 280 | 843.500 | 0.001  |
| 281 | 844.400 | 0.001  |
| 282 | 852.500 | 0.000  |
| 283 | 856.800 | 0.001  |
| 284 | 857.800 | 0.001  |
| 285 | 862.900 | 0.001  |
| 286 | 863.700 | 0.001  |
| 287 | 867.000 | 0.001  |
| 288 | 873.100 | 0.001  |
| 289 | 880.700 | 0.001  |
| 290 | 883.100 | 0.001  |
| 291 | 884.900 | 0.001  |
| 292 | 886.300 | 0.001  |
| 293 | 888.500 | 0.001  |
| 294 | 898,300 | 0.000  |
| 295 | 902.200 | 0.001  |
| 296 | 907.200 | 0.001  |
| 297 | 908,900 | 0.001  |
| 298 | 915.300 | 0.001  |
| 299 | 919.400 | 0.001  |
| 300 | 922.600 | 0.001  |
| 301 | 924,300 | 0.001  |
| 302 | 925.800 | 0.000  |
| 303 | 933.600 | 0.001  |
| 304 | 935.000 | 0.001  |
| 305 | 937 000 | 0.001  |
| 306 | 939,200 | 0.001  |
| 307 | 952,600 | 0.001  |
| 308 | 954,200 | 0.001  |
| 309 | 956.800 | 0.001  |
| 310 | 957.800 | 0.001  |
| 311 | 958,700 | 0.000  |
| 312 | 969.000 | 0.001  |
| 313 | 973 300 | 0.001  |
| 314 | 985 700 | 0.001  |
| 315 | 988 600 | 0.001  |
| 316 | 989 600 | 0.001  |
| 317 | 993.600 | 0.001  |
| 017 | 335.000 | 0.001  |

Figura 149 – Espectro de Massas; Reação N,N-dimetilanilina com Co(acac)<sub>2</sub>; T.R.= 15.3; N-metil-fenil-benzamida (continuação 2)

## **B.3.3** AuCl<sub>3</sub>



Figura 150 - Cromatograma da reação N,N-dimetilanilina com AuCl<sub>3</sub>

| No. | Name                    | Structure                                                                             | Formula  | M       | Base Peak Mass | tR (min) |
|-----|-------------------------|---------------------------------------------------------------------------------------|----------|---------|----------------|----------|
| 3   | N-metil-fenil-benzamida | $ \begin{array}{c} 0 \\ 9 \\ 9 \\ -1 \\ -N \\ 10 \end{array} $ 12 13<br>14<br>16 - 15 | C14H13NO | 211.100 | 104.900        | 15.303   |

Figura 151 – Cromatograma da reação N,N-dimetilanilina com AuCl<sub>3</sub> (continuação



## n,n-dimetilanilina com AuCl3

Figura 152 – Espectro de Massas; Reação N,N-dimetilanilina com AuCl<sub>3</sub>; T.R.=7.9; Ácido benzóico

| No. | m/z     | TIC(%)  | No. | m/z     | TIC(%) | No. | m/z      | TIC(%) | No. | m/z     | TIC(%) |
|-----|---------|---------|-----|---------|--------|-----|----------|--------|-----|---------|--------|
| 1   | 49.900  | 2.089   | 47  | 150.000 | 0.004  | 93  | 521.600  | 0.001  | 139 | 746.600 | 0.001  |
| 2   | 50.900  | 3.525   | 48  | 160.900 | 0.003  | 94  | 530.000  | 0.001  | 140 | 750.400 | 0.001  |
| 3   | 51.900  | 0.331   | 49  | 161.900 | 0.001  | 95  | 532.700  | 0.001  | 141 | 751.300 | 0.001  |
| 4   | 52.900  | 0.295   | 50  | 165.700 | 0.001  | 96  | 537.000  | 0.001  | 142 | 761.300 | 0.001  |
| 5   | 54.000  | 0.040   | 51  | 171.500 | 0.001  | 97  | 551.400  | 0.001  | 143 | 776.100 | 0.001  |
| 6   | 54.900  | 0.091   | 52  | 178.800 | 0.037  | 98  | 552.600  | 0.001  | 144 | 777.700 | 0.006  |
| 7   | 60.900  | 0.232   | 53  | 186.100 | 0.001  | 99  | 559.700  | 0.001  | 145 | 787.700 | 0.002  |
| 8   | 61.900  | 0.144   | 54  | 212.000 | 0.001  | 100 | 561.400  | 0.001  | 146 | 797.600 | 0.001  |
| 9   | 63.000  | 0.217   | 55  | 212.700 | 0.001  | 101 | 562.600  | 0.001  | 147 | 799.500 | 0.033  |
| 10  | 64.000  | 0.133   | 56  | 218.300 | 0.001  | 102 | 566.000  | 0.009  | 148 | 800.200 | 0.001  |
| 11  | 65.000  | 0.670   | 57  | 233.300 | 0.001  | 103 | 577.600  | 0.001  | 149 | 801.500 | 0.001  |
| 12  | 66.000  | 0.320   | 58  | 234.800 | 0.002  | 104 | 578.500  | 0.001  | 150 | 810.300 | 0.001  |
| 13  | 66.900  | 0.046   | 59  | 242.600 | 0.001  | 105 | 579.500  | 0.000  | 151 | 812.500 | 0.001  |
| 14  | 72.900  | 0.559   | 60  | 244.000 | 0.001  | 106 | 583.600  | 0.001  | 152 | 814.000 | 0.001  |
| 15  | 74.000  | 1.538   | 61  | 247.900 | 0.003  | 107 | 584.300  | 0.001  | 153 | 816.200 | 0.001  |
| 16  | 74.900  | 0.487   | 62  | 249.300 | 0.001  | 108 | 596.300  | 0.000  | 154 | 818.200 | 0.001  |
| 17  | 75.900  | 0.823   | 63  | 262.800 | 0.001  | 109 | 597.100  | 0.000  | 155 | 829.200 | 0.001  |
| 18  | 77.000  | 17.227  | 64  | 283.200 | 0.093  | 110 | 598.700  | 0.001  | 156 | 835.000 | 0.001  |
| 19  | 77.900  | 1.323   | 65  | 295.600 | 0.023  | 111 | 599.700  | 0.001  | 157 | 836.300 | 0.001  |
| 20  | 79.000  | 0.151   | 66  | 318.100 | 0.001  | 112 | 602.600  | 0.001  | 158 | 854.300 | 0.001  |
| 21  | 80.900  | 0.044   | 67  | 350.000 | 0.001  | 113 | 609.400  | 0.001  | 159 | 855.000 | 0.001  |
| 22  | 82.000  | 0.005   | 68  | 375.300 | 0.001  | 114 | 619.900  | 0.001  | 160 | 856.000 | 0.001  |
| 23  | 89.100  | 0.013   | 69  | 376.400 | 0.001  | 115 | 636.200  | 0.003  | 161 | 873.400 | 0.001  |
| 24  | 91.900  | 0.129   | 70  | 377.100 | 0.001  | 116 | 639.900  | 0.001  | 162 | 875.100 | 0.001  |
| 25  | 92.800  | 0.072   | 71  | 379.000 | 0.001  | 117 | 641.900  | 0.001  | 163 | 877.900 | 0.001  |
| 26  | 94.000  | 0.685   | 72  | 393.600 | 0.003  | 118 | 643.500  | 0.000  | 164 | 889.100 | 0.000  |
| 27  | 94.900  | 0.259   | 73  | 423.800 | 0.001  | 119 | 660.900  | 0.001  | 165 | 890.600 | 0.001  |
| 28  | 96.000  | 0.000   | 74  | 425.600 | 0.002  | 120 | 662.000  | 0.001  | 166 | 892.800 | 0.001  |
| 29  | 102.700 | 0.009   | 75  | 432.000 | 0.003  | 121 | 664.000  | 0.001  | 167 | 917.100 | 0.001  |
| 30  | 103.900 | 0.219   | 76  | 434.400 | 0.001  | 122 | 671.000  | 0.001  | 168 | 918.800 | 0.001  |
| 31  | 104.900 | 32.001  | 77  | 438.200 | 0.001  | 123 | 672.900  | 0.001  | 169 | 919.900 | 0.001  |
| 32  | 105.900 | 2.952   | 78  | 442.900 | 0.001  | 124 | 682.600  | 0.000  | 170 | 924.700 | 0.009  |
| 33  | 106.900 | 0.147   | 79  | 445.100 | 0.001  | 125 | 698.700  | 0.001  | 171 | 948.200 | 0.015  |
| 25  | 110.000 | 0.029   | 00  | 447.500 | 0.001  | 120 | 702.200  | 0.000  | 172 | 950.100 | 0.001  |
| 35  | 119.000 | 0.017   | 01  | 448.200 | 0.014  | 127 | 702.300  | 0.000  | 173 | 905.300 | 0.001  |
| 37  | 121 100 | 0.023   | 83  | 449.500 | 0.001  | 120 | 710 200  | 0.001  | 174 | 975.400 | 0.010  |
| 38  | 121.100 | 29.849  | 84  | 458 700 | 0.001  | 120 | 714 300  | 0.001  | 176 | 976 100 | 0.001  |
| 30  | 122.900 | 2 4 6 1 | 85  | 461 000 | 0.001  | 131 | 715 200  | 0.001  | 177 | 979 700 | 0.001  |
| 40  | 123,900 | 0.109   | 86  | 484 100 | 0.010  | 132 | 716 200  | 0.001  | 178 | 980.600 | 0.000  |
| 40  | 128 200 | 0.001   | 87  | 491 100 | 0.006  | 133 | 719.300  | 0.001  | 179 | 986 700 | 0.001  |
| 42  | 133 800 | 0.001   | 88  | 494 500 | 0.001  | 134 | 720.000  | 0.001  | 180 | 992 400 | 0.001  |
| 43  | 134,700 | 0.020   | 89  | 504 300 | 0.001  | 135 | 730,200  | 0.003  | 181 | 996,900 | 0.001  |
| 44  | 138 100 | 0.001   | 90  | 505,900 | 0.001  | 136 | 743 400  | 0.001  | 101 | 500.000 | 0.001  |
| 45  | 142.000 | 0.009   | 91  | 507.500 | 0.001  | 137 | 744.400  | 0.001  |     |         |        |
| 46  | 144 900 | 0.000   | 92  | 517 600 | 0.005  | 138 | 745 100  | 0.001  |     |         |        |
|     | 111.000 | 0.001   | 02  | 517.000 | 0.000  |     | 1 10.100 | 0.001  |     |         |        |

Figura 153 – Espectro de Massas; Reação N,N-dimetilanilina com AuCl<sub>3</sub>; T.R.=7.9; Ácido benzóico (continuação)



## n,n-dimetilanilina com AuCl3

Figura 154 – Espectro de Massas; Reação N,N-dimetilanilina com AuCl<sub>3</sub>; T.R.= 6.3; N,N-dimetilanilina

| No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 1   | 49.900  | 0.624  | 51  | 118.000 | 3.727  | 101 | 404.700 | 0.000  | 151 | 712.600 | 0.000  |
| 2   | 50.900  | 1.542  | 52  | 119.000 | 1.054  | 102 | 406.400 | 0.000  | 152 | 713.500 | 0.007  |
| 3   | 51.800  | 0.168  | 53  | 120.000 | 34.355 | 103 | 411.200 | 0.000  | 153 | 733.800 | 0.001  |
| 4   | 52.800  | 0.187  | 54  | 121.000 | 25.190 | 104 | 431.500 | 0.000  | 154 | 734.500 | 0.001  |
| 5   | 53.800  | 0.097  | 55  | 122.000 | 2.114  | 105 | 432.600 | 0.000  | 155 | 745.500 | 0.000  |
| 6   | 54.500  | 0.000  | 56  | 123.000 | 0.131  | 106 | 441.200 | 0.000  | 156 | 747.800 | 0.000  |
| 7   | 55.900  | 0.000  | 57  | 131.900 | 0.056  | 107 | 442.700 | 0.000  | 157 | 748.800 | 0.001  |
| 8   | 57.200  | 0.000  | 58  | 132.900 | 0.012  | 108 | 454.400 | 0.012  | 158 | 750.300 | 0.000  |
| 9   | 58.400  | 0.147  | 59  | 134.900 | 0.030  | 109 | 455.400 | 0.001  | 159 | 751.100 | 0.000  |
| 10  | 59.500  | 0.082  | 60  | 149.000 | 0.015  | 110 | 460.600 | 0.009  | 160 | 761.000 | 0.001  |
| 11  | 60.300  | 0.075  | 61  | 185.500 | 0.000  | 111 | 462.800 | 0.001  | 161 | 766.500 | 0.001  |
| 12  | 60.900  | 0.060  | 62  | 190.300 | 0.000  | 112 | 468.600 | 0.000  | 162 | 773.500 | 0.001  |
| 13  | 61.900  | 0.096  | 63  | 191.700 | 0.001  | 113 | 470.600 | 0.000  | 163 | 776.800 | 0.001  |
| 14  | 63.000  | 0.511  | 64  | 195.500 | 0.000  | 114 | 472.300 | 0.001  | 164 | 786.100 | 0.000  |
| 15  | 64.000  | 0.218  | 65  | 196.400 | 0.000  | 115 | 474.300 | 0.001  | 165 | 786.800 | 0.000  |
| 16  | 65.000  | 0.497  | 66  | 202.900 | 0.034  | 116 | 478.800 | 0.006  | 166 | 812.500 | 0.001  |
| 17  | 65.900  | 0.218  | 67  | 209.900 | 0.002  | 117 | 489.400 | 0.000  | 167 | 825.500 | 0.000  |
| 18  | 67.000  | 0.117  | 68  | 216.900 | 0.001  | 118 | 498.600 | 0.000  | 168 | 828.500 | 0.000  |
| 19  | 68.900  | 0.029  | 69  | 237.300 | 0.000  | 119 | 499.900 | 0.000  | 169 | 839.100 | 0.000  |
| 20  | 70.300  | 0.001  | 70  | 238.300 | 0.000  | 120 | 510.300 | 0.002  | 170 | 844.700 | 0.001  |
| 21  | 71.200  | 0.000  | 71  | 239.600 | 0.000  | 121 | 519.300 | 0.001  | 171 | 849.900 | 0.000  |
| 22  | 72.900  | 0.067  | 72  | 248.000 | 0.000  | 122 | 520.700 | 0.006  | 172 | 854.100 | 0.002  |
| 23  | 73.900  | 0.316  | 73  | 254.900 | 0.006  | 123 | 537.100 | 0.001  | 173 | 855.600 | 0.007  |
| 24  | 75.000  | 0.275  | 74  | 256.100 | 0.000  | 124 | 539.000 | 0.002  | 174 | 861.100 | 0.000  |
| 25  | 76.000  | 0.337  | 75  | 259.700 | 0.007  | 125 | 559.000 | 0.000  | 175 | 875.200 | 0.000  |
| 26  | 77.000  | 6.420  | 76  | 262.400 | 0.000  | 126 | 562.800 | 0.000  | 176 | 885.600 | 0.000  |
| 27  | 78.000  | 1.141  | 77  | 267.000 | 0.000  | 127 | 564.400 | 0.001  | 177 | 887.100 | 0.000  |
| 28  | 79.000  | 2.254  | 78  | 282.100 | 0.000  | 128 | 580.100 | 0.005  | 178 | 890.100 | 0.005  |
| 29  | 80.000  | 0.213  | 79  | 303.800 | 0.001  | 129 | 582.500 | 0.000  | 179 | 904.900 | 0.004  |
| 30  | 86.900  | 0.000  | 80  | 308.600 | 0.000  | 130 | 583.300 | 0.000  | 180 | 907.300 | 0.000  |
| 31  | 88.100  | 0.007  | 81  | 315.100 | 0.002  | 131 | 591.000 | 0.004  | 181 | 927.900 | 0.000  |
| 32  | 89.100  | 0.137  | 82  | 319.400 | 0.001  | 132 | 597.600 | 0.000  | 182 | 937.800 | 0.000  |
| 33  | 89.800  | 0.084  | 83  | 329.200 | 0.000  | 133 | 599.000 | 0.000  | 183 | 938.700 | 0.000  |
| 34  | 91.000  | 2.947  | 84  | 329.900 | 0.000  | 134 | 619.500 | 0.001  | 184 | 942.700 | 0.015  |
| 35  | 92.000  | 1.027  | 85  | 333.900 | 0.003  | 135 | 624.000 | 0.001  | 185 | 944.100 | 0.000  |
| 36  | 93.000  | 1.884  | 86  | 339.700 | 0.000  | 136 | 624.900 | 0.000  | 186 | 947.600 | 0.000  |
| 37  | 94.000  | 0.662  | 87  | 346.500 | 0.007  | 137 | 625.800 | 0.000  | 187 | 949.300 | 0.000  |
| 38  | 95.000  | 0.071  | 88  | 348.700 | 0.002  | 138 | 626.500 | 0.003  | 188 | 950.000 | 0.000  |
| 39  | 95.700  | 0.010  | 89  | 355.700 | 0.001  | 139 | 629.400 | 0.001  | 189 | 954.700 | 0.001  |
| 40  | 102.000 | 0.041  | 90  | 360.900 | 0.004  | 140 | 635.300 | 0.000  | 190 | 972.000 | 0.000  |
| 41  | 103.000 | 2.758  | 91  | 373.100 | 0.000  | 141 | 643.400 | 0.001  | 191 | 975.600 | 0.000  |
| 42  | 104.000 | 3.664  | 92  | 373.900 | 0.000  | 142 | 644.600 | 0.000  | 192 | 977.800 | 0.001  |
| 43  | 105.000 | 3.188  | 93  | 376.000 | 0.000  | 143 | 646.600 | 0.000  | 193 | 979.600 | 0.001  |
| 44  | 106.000 | 0.578  | 94  | 376.800 | 0.000  | 144 | 667.400 | 0.001  | 194 | 980.900 | 0.000  |
| 45  | 107.000 | 0.148  | 95  | 379.900 | 0.005  | 145 | 671.600 | 0.036  | 195 | 992.700 | 0.012  |
| 46  | 111.000 | 0.000  | 96  | 386.200 | 0.000  | 146 | 672.500 | 0.001  | 196 | 998.300 | 0.000  |
| 47  | 112.400 | 0.000  | 97  | 386.900 | 0.000  | 147 | 674.000 | 0.000  |     |         |        |
| 48  | 114.800 | 0.002  | 98  | 400.300 | 0.005  | 148 | 676.500 | 0.001  |     |         |        |
| 49  | 116.200 | 0.003  | 99  | 401.300 | 0.000  | 149 | 677.200 | 0.001  |     |         |        |
| 50  | 117.000 | 0.130  | 100 | 403.000 | 0.000  | 150 | 710.500 | 0.000  |     |         |        |

Figura 155 – Espectro de Massas; Reação N,N-dimetilanilina com *AuCl*<sub>3</sub>; T.R.= 6.3; N,N-dimetilanilina (continuação)



#### n,n-dimetilanilina com AuCl3

Figura 156 - Espectro de Massas; Reação N,N-dimetilanilina com AuCl<sub>3</sub>; T.R.= 15.3; N-metil-fenil-benzamida

| 1         49.800         0.406         50         113.900         0.021         99         214.900         0.005         148         664.200         0.006           3         51.900         0.106         52         116.000         0.007         101         219.900         0.001         148         665.500         0.006           4         63.000         0.058         63         117.400         0.071         101         219.800         0.001         150         666.500         0.001           5         53.900         0.018         54         118.000         6.114         103         278.600         0.001         152         670.100         0.001           6         54.800         0.028         55         119.000         0.476         104         279.200         0.001         154         708.400         0.000           8         57.600         0.001         58         122.000         0.005         108         315.000         0.001         156         744.600         0.001           11         61.000         0.028         122         315.000         0.001         158         758.00         0.001           12         61.900         0.127                                                                                                                                                                                              | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z      | TIC(%) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|--------|-----|---------|--------|-----|---------|--------|-----|----------|--------|
| 2         50.900         2.136         51         115.100         0.012         117.600         0.001         149         665.300         0.001           3         51.900         0.016         52         116.000         0.007         101         129.900         0.004         150         665.400         0.001           5         53.900         0.018         54         118.000         6.114         103         278.900         0.004         151         666.200         0.001           6         54.800         0.001         55         110.00         176         104         279.200         0.000         153         170.600         0.001           8         57.600         0.001         57         122.000         0.033         106         294.100         0.001         155         171.400         0.000           9         59.200         0.001         58         122.100         0.032         193         315.800         0.001         158         752.600         0.001           11         61.000         0.022         62         131.900         0.021         111         324.400         0.001         168         375.600         0.003           13                                                                                                                                                                                               | 1   | 49.800  | 0.406  | 50  | 113.900 | 0.021  | 99  | 214.900 | 0.005  | 148 | 664.200  | 0.001  |
| 3         51:900         0.106         52         116:000         0.007         101         219:900         0.001         150         666:500         0.001           4         53:300         0.018         54         118:000         6.114         103         278:800         0.004         152         670:100         0.001           6         54:800         0.028         55         118:000         61:14         103         278:800         0.004         152         670:100         0.001           7         55:800         0.001         57         122:000         0.006         106         294:100         0.001         154         708:400         0.000           9         59:200         0.001         58         122:100         0.016         107         300:700         0.015         158         775:200         0.001           11         61:000         0.027         61         128:000         0.001         110         316:800         0.001         158         758:00         0.001           12         61:30:00         0.022         113         326:400         0.001         161         758:00         0.001           13         63:00         0.035 <td>2</td> <td>50.900</td> <td>2.136</td> <td>51</td> <td>115.100</td> <td>0.123</td> <td>100</td> <td>217.600</td> <td>0.001</td> <td>149</td> <td>665.300</td> <td>0.006</td>            | 2   | 50.900  | 2.136  | 51  | 115.100 | 0.123  | 100 | 217.600 | 0.001  | 149 | 665.300  | 0.006  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3   | 51.900  | 0.106  | 52  | 116.000 | 0.007  | 101 | 219.900 | 0.001  | 150 | 666.500  | 0.001  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4   | 53.000  | 0.059  | 53  | 117.400 | 0.071  | 102 | 248.800 | 0.008  | 151 | 668.200  | 0.001  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5   | 53.900  | 0.018  | 54  | 118.000 | 6.114  | 103 | 275.800 | 0.004  | 152 | 670.100  | 0.001  |
| 7         55.800         0.001         56         120.200         0.006         105         294.900         0.001         155         711.400         0.000           8         57.600         0.001         58         123.100         0.016         107         300.700         0.001         155         711.400         0.000           10         59.900         0.001         58         123.100         0.016         107         300.700         0.001         156         714.600         0.001           11         61.000         0.008         60         127.000         0.052         109         315.800         0.001         158         756.000         0.001           12         61.900         0.127         61         128.000         0.002         111         326.400         0.001         166         756.000         0.001           14         63.800         0.426         62         131.900         0.002         113         328.200         0.001         161         756.000         0.001           15         65.140.000         0.68         116         346.900         0.001         166         783.900         0.003           16         65.800         0.                                                                                                                                                                                        | 6   | 54.800  | 0.028  | 55  | 119.000 | 0.476  | 104 | 279.200 | 0.000  | 153 | 707.600  | 0.001  |
| 8         57.600         0.001         57         122.000         0.033         106         295.900         0.001         155         711.400         0.0003           10         59.900         0.001         59         126.100         0.010         108         315.800         0.001         158         749.700         0.001           11         61.000         0.002         60         127.000         0.052         109         315.800         0.001         158         752.000         0.001           12         61.900         0.127         61         128.000         0.002         111         326.400         0.001         160         756.000         0.009           14         63.800         0.122         63         136.900         0.0187         113         328.200         0.001         161         758.200         0.001           15         65.100         0.103         64         149.000         0.081         115         332.500         0.001         164         779.700         0.012           18         70.600         0.603         67         141.700         0.033         118         361.500         1001         165         783.900         0.001 <t< td=""><td>7</td><td>55.800</td><td>0.001</td><td>56</td><td>120.200</td><td>0.006</td><td>105</td><td>294.100</td><td>0.001</td><td>154</td><td>708.400</td><td>0.000</td></t<>   | 7   | 55.800  | 0.001  | 56  | 120.200 | 0.006  | 105 | 294.100 | 0.001  | 154 | 708.400  | 0.000  |
| 9         59.200         0.001         58         123.100         0.016         107         300.700         0.001         156         746.600         0.003           10         59.900         0.001         59         127.000         0.052         109         315.800         0.001         158         782.000         0.001           12         61.900         0.127         61         128.000         0.002         111         326.400         0.001         158         753.600         0.001           13         63.000         0.122         63         136.900         0.002         112         327.300         0.001         161         758.000         0.001           14         65.800         0.045         65         140.000         0.041         114         330.700         0.005         163         775.600         0.001           16         65.800         0.045         67         141.700         0.008         116         346.900         0.001         165         783.900         0.003           17         76.000         0.642         70         152.100         0.229         119         363.300         0.001         167         786.900         0.001 <td< td=""><td>8</td><td>57.600</td><td>0.001</td><td>57</td><td>122.000</td><td>0.033</td><td>106</td><td>295.900</td><td>0.001</td><td>155</td><td>711.400</td><td>0.000</td></td<>  | 8   | 57.600  | 0.001  | 57  | 122.000 | 0.033  | 106 | 295.900 | 0.001  | 155 | 711.400  | 0.000  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9   | 59.200  | 0.001  | 58  | 123.100 | 0.016  | 107 | 300.700 | 0.001  | 156 | 746.600  | 0.003  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10  | 59,900  | 0.001  | 59  | 126,100 | 0.010  | 108 | 315.000 | 0.025  | 157 | 749,700  | 0.001  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11  | 61.000  | 0.008  | 60  | 127.000 | 0.052  | 109 | 315.800 | 0.001  | 158 | 752.000  | 0.001  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12  | 61,900  | 0.127  | 61  | 128.000 | 0.001  | 110 | 316.900 | 0.001  | 159 | 753.600  | 0.001  |
| 1463.8000.12263136.9000.002112327.3000.001161758.2000.0161565.1000.10364139.0000.187113328.2000.001162774.6000.0011665.8000.04566140.0000.041114330.7000.005163775.8000.0011767.4000.00366141.0000.088115332.5000.001164779.7000.0121870.6000.00767141.7000.008116346.9000.001165783.9000.0012075.0000.08869150.8000.033118361.5000.001167795.0000.0012176.0000.54270152.1000.229119363.3000.006168796.9000.0012377.9001.38272154.1000.016121393.2000.001170800.2000.0012479.0000.39973155.2000.012122394.7000.001172817.1000.0012579.7000.00474157.4000.005125425.4000.001174856.3000.0042785.0000.00476168.7000.029126425.4000.001174856.3000.0042683.6000.00477164.5000.029126425.4000.001<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13  | 63.000  | 0.256  | 62  | 131,900 | 0.002  | 111 | 326,400 | 0.001  | 160 | 756.000  | 0.009  |
| 1565.100 $0.103$ 64139.000 $0.187$ 113328.200 $0.001$ 162774.600 $0.001$ 1665.800 $0.045$ 65140.000 $0.041$ 114330.700 $0.005$ 163775.800 $0.001$ 1767.400 $0.003$ 67141.700 $0.008$ 115332.500 $0.001$ 164779.700 $0.012$ 1870.600 $0.003$ 67141.700 $0.008$ 116346.900 $0.001$ 165778.300 $0.003$ 1974.000 $0.542$ 7052.100 $0.229$ 117348.500 $0.001$ 167795.000 $0.001$ 2075.000 $0.542$ 70152.100 $0.229$ 119363.300 $0.006$ 168796.900 $0.001$ 2377.900 $1.382$ 72154.100 $0.016$ 121393.200 $0.001$ 170800.200 $0.001$ 2479.000 $0.399$ 73155.200 $0.001$ 124419.200 $0.001$ 174852.400 $0.001$ 2579.700 $0.004$ 74157.400 $0.006$ 123399.400 $0.001$ 174852.2400 $0.001$ 2683.600 $0.004$ 77164.500 $0.029$ 126429.600 $0.001$ 176862.400 $0.001$ 2785.000 $0.001$ 78166.000 $0.72$ 127435.200 $0.001$ 177863.200 $0.001$ 2886.700 $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14  | 63.800  | 0.122  | 63  | 136,900 | 0.002  | 112 | 327.300 | 0.001  | 161 | 758.200  | 0.016  |
| 16         65.800         0.045         65         140.000         0.041         114         330.700         0.005         163         775.800         0.001           17         67.400         0.003         66         141.000         0.088         115         332.500         0.001         164         779.700         0.012           18         70.600         0.003         67         141.700         0.008         116         346.900         0.001         166         783.900         0.003           19         74.000         0.167         68         149.800         0.033         118         361.500         0.001         166         783.900         0.001           21         76.000         0.542         70         152.900         0.061         120         374.800         0.001         170         800.200         0.001           24         79.000         0.309         73         155.200         0.012         122         394.700         0.001         171         801.00         0.001           25         79.700         0.004         74         157.400         0.001         174         852.400         0.001           26         83.600         0.001                                                                                                                                                                                        | 15  | 65,100  | 0.103  | 64  | 139.000 | 0.187  | 113 | 328,200 | 0.001  | 162 | 774,600  | 0.001  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16  | 65.800  | 0.045  | 65  | 140.000 | 0.041  | 114 | 330,700 | 0.005  | 163 | 775.800  | 0.001  |
| 1870.6000.00367141.7000.008116346.9000.001165783.9000.0031974.0000.16768149.8000.039117348.5000.001166793.6000.0072075.0000.08869150.8000.033118361.5000.001167795.0000.0012176.0000.54270152.1000.229119363.3000.006168796.9000.0012277.00018.20671152.9000.061120374.8000.007169798.7000.0012479.0000.30973155.2000.012122394.7000.001171801.1000.0012579.7000.00474157.4000.006123399.4000.001172817.1000.0012683.6000.00476160.7000.005125425.4000.001174852.4000.0012886.7000.00178166.0000.072127435.2000.001176862.4000.0013189.0000.00181168.2000.012130440.0000.001177863.0000.0013290.0000.00581169.4000.012130440.0000.001177863.2000.0013290.0000.00682176.0000.027133445.5000.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17  | 67,400  | 0.003  | 66  | 141.000 | 0.088  | 115 | 332,500 | 0.001  | 164 | 779,700  | 0.012  |
| 19         74.00         0.167         68         149.800         0.039         117         348.500         0.001         166         793.600         0.001           20         75.000         0.088         69         150.800         0.033         118         361.500         0.001         167         795.000         0.001           21         76.000         0.542         70         152.100         0.229         119         363.300         0.006         168         796.900         0.001           22         77.000         18.206         71         152.900         0.061         120         374.800         0.001         170         800.200         0.001           23         77.900         1.382         72         154.100         0.016         121         393.200         0.001         171         801.00         0.001           24         79.00         0.004         74         157.400         0.006         123         399.400         0.001         173         827.20         0.004           27         85.000         0.001         76         166.700         0.029         126         429.600         0.001         176         866.300         0.001         1                                                                                                                                                                                | 18  | 70,600  | 0.003  | 67  | 141,700 | 0.008  | 116 | 346.900 | 0.001  | 165 | 783,900  | 0.003  |
| 10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10<                                                                                                                                                                                                                                   | 19  | 74 000  | 0.167  | 68  | 149 800 | 0.039  | 117 | 348 500 | 0.001  | 166 | 793 600  | 0.007  |
| 21         76.000         0.542         70         152.100         0.229         119         363.300         0.006         168         798.900         0.001           22         77.000         18.206         71         152.100         0.229         119         363.300         0.006         168         798.900         0.001           23         77.900         1.382         72         154.100         0.016         121         393.200         0.001         170         800.200         0.001           24         79.000         0.309         73         155.200         0.012         122         394.700         0.001         171         801.100         0.001           25         79.700         0.004         74         157.400         0.006         123         399.400         0.001         178         857.00         0.001           26         83.600         0.094         77         164.500         0.072         127         435.200         0.001         176         856.300         0.001           28         86.700         0.017         128         436.200         0.001         177         863.200         0.001           30         87.900         0.0                                                                                                                                                                                        | 20  | 75.000  | 0.088  | 69  | 150 800 | 0.033  | 118 | 361 500 | 0.001  | 167 | 795.000  | 0.001  |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                        | 21  | 76.000  | 0.542  | 70  | 152 100 | 0.229  | 119 | 363 300 | 0.006  | 168 | 796 900  | 0.001  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22  | 77,000  | 18 206 | 71  | 152 900 | 0.061  | 120 | 374 800 | 0.007  | 169 | 798 700  | 0.001  |
| 12         17         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         18         17         18         18         10         17         18         16         10         17         18         18         10         10         11         17         18         18         10         10         10         11         12         13         14         10         10         10         10         10         10         10         10         10<                                                                                                                                                                                                                                   | 23  | 77 900  | 1 382  | 72  | 154 100 | 0.001  | 121 | 393 200 | 0.001  | 170 | 800 200  | 0.001  |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                        | 24  | 79,000  | 0.309  | 73  | 155 200 | 0.012  | 122 | 394 700 | 0.001  | 171 | 801 100  | 0.001  |
| 26         83.600         0.008         75         158.400         0.005         124         419.200         0.001         173         827.200         0.004           27         85.000         0.001         76         160.700         0.005         125         425.400         0.001         174         852.400         0.001           28         86.000         0.094         77         164.500         0.029         126         429.600         0.001         174         852.400         0.001           30         87.900         0.020         79         167.000         0.197         128         436.200         0.001         176         862.400         0.001           31         89.000         0.010         80         168.200         0.015         129         438.800         0.001         178         869.800         0.001           32         90.000         0.068         82         176.000         0.122         131         441.000         0.001         180         906.200         0.006           33         90.900         0.068         82         176.000         0.027         133         446.500         0.001         182         926.400         0.016 <t< td=""><td>25</td><td>79 700</td><td>0.004</td><td>74</td><td>157 400</td><td>0.006</td><td>123</td><td>399 400</td><td>0.000</td><td>172</td><td>817,100</td><td>0.001</td></t<>  | 25  | 79 700  | 0.004  | 74  | 157 400 | 0.006  | 123 | 399 400 | 0.000  | 172 | 817,100  | 0.001  |
| 27         85.000         0.001         76         160.700         0.002         125         425.400         0.001         174         852.400         0.001           28         86.000         0.094         77         164.500         0.029         126         429.600         0.001         174         852.400         0.001           30         87.900         0.020         79         167.000         0.197         128         436.200         0.001         176         862.400         0.001           31         89.000         0.010         80         168.200         0.015         129         438.800         0.001         177         863.200         0.001           32         90.000         0.005         81         169.400         0.012         131         441.000         0.001         178         869.800         0.001           33         90.900         0.068         82         176.000         0.027         133         446.500         0.001         180         906.200         0.006           34         92.000         0.011         85         180.000         0.27         133         446.500         0.001         183         930.600         0.003 <td< td=""><td>26</td><td>83,600</td><td>0.008</td><td>75</td><td>158 400</td><td>0.000</td><td>124</td><td>419 200</td><td>0.001</td><td>173</td><td>827 200</td><td>0.004</td></td<> | 26  | 83,600  | 0.008  | 75  | 158 400 | 0.000  | 124 | 419 200 | 0.001  | 173 | 827 200  | 0.004  |
| 28         86.000         0.094         77         164.500         0.029         126         429.600         0.003         175         856.300         0.008           29         86.700         0.001         78         166.000         0.072         127         435.200         0.001         176         862.400         0.001           30         87.900         0.020         79         167.000         0.197         128         436.200         0.001         177         863.200         0.001           31         89.000         0.005         81         169.400         0.012         130         440.000         0.001         178         869.800         0.006           33         90.900         0.016         83         176.000         0.027         133         446.500         0.001         180         906.200         0.006           34         92.000         0.011         85         180.000         0.127         133         446.500         0.001         181         911.600         0.001           35         94.000         0.012         87         182.200         0.031         136         507.900         0.006         184         937.100         0.001 <t< td=""><td>27</td><td>85.000</td><td>0.001</td><td>76</td><td>160,700</td><td>0.005</td><td>125</td><td>425,400</td><td>0.001</td><td>174</td><td>852,400</td><td>0.001</td></t<>  | 27  | 85.000  | 0.001  | 76  | 160,700 | 0.005  | 125 | 425,400 | 0.001  | 174 | 852,400  | 0.001  |
| 29         86.700         0.001         78         166.000         0.012         127         435.200         0.001         176         862.400         0.001           30         87.900         0.020         79         167.000         0.197         128         436.200         0.001         177         863.200         0.001           31         89.000         0.005         81         169.400         0.012         130         440.000         0.001         178         869.800         0.001           33         90.900         0.068         82         176.000         0.012         131         441.000         0.001         179         904.700         0.006           34         92.000         0.016         83         178.100         0.027         133         446.500         0.001         181         911.600         0.001           35         94.000         0.018         84         179.000         0.277         133         446.500         0.001         182         926.400         0.016           36         95.000         0.117         85         180.000         0.41         135         497.900         0.001         183         930.600         0.003 <td< td=""><td>28</td><td>86,000</td><td>0.094</td><td>77</td><td>164 500</td><td>0.029</td><td>126</td><td>429,600</td><td>0.003</td><td>175</td><td>856,300</td><td>0.008</td></td<> | 28  | 86,000  | 0.094  | 77  | 164 500 | 0.029  | 126 | 429,600 | 0.003  | 175 | 856,300  | 0.008  |
| 10         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100                                                                                                                                                                                           | 29  | 86 700  | 0.001  | 78  | 166,000 | 0.072  | 127 | 435 200 | 0.001  | 176 | 862 400  | 0.001  |
| 03         03000         0.010         101000         10100         10100         10100         10100         10100         10100         10100         10100         10100         10100         10100         10100         10100         10100         10100         10100         10100         10100         10100         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         100000         10000         10000                                                                                                                       | 30  | 87 900  | 0.020  | 79  | 167 000 | 0 197  | 128 | 436 200 | 0.001  | 177 | 863 200  | 0.001  |
| 32         90.000         0.005         81         169.400         0.012         130         440.000         0.001         179         904.700         0.006           33         90.900         0.068         82         176.000         0.012         131         441.000         0.001         180         906.200         0.006           34         92.000         0.016         83         178.100         0.067         132         445.500         0.001         181         911.600         0.001           35         94.000         0.008         84         179.000         0.027         133         446.500         0.001         182         926.400         0.016           36         95.000         0.117         85         180.000         0.127         134         477.900         0.001         183         930.600         0.003           37         97.300         0.001         86         181.000         0.041         135         497.900         0.001         185         952.300         0.001           38         98.200         0.003         88         184.100         0.020         137         543.200         0.003         186         954.300         0.006 <t< td=""><td>31</td><td>89,000</td><td>0.010</td><td>80</td><td>168,200</td><td>0.015</td><td>129</td><td>438,800</td><td>0.001</td><td>178</td><td>869,800</td><td>0.001</td></t<>  | 31  | 89,000  | 0.010  | 80  | 168,200 | 0.015  | 129 | 438,800 | 0.001  | 178 | 869,800  | 0.001  |
| 00.000         0.000         0.000         0.000         0.000         0.000         0.000           34         92.000         0.016         83         176.000         0.012         131         441.000         0.001         180         906.200         0.006           35         94.000         0.008         84         179.000         0.027         133         446.500         0.001         181         911.600         0.003           37         97.300         0.011         85         180.000         0.127         134         447.900         0.001         183         930.600         0.003           38         98.200         0.012         87         182.200         0.031         136         507.900         0.001         185         952.300         0.001           38         98.200         0.033         88         184.100         0.022         137         543.200         0.003         186         954.300         0.006           40         102.000         0.034         90         195.000         0.85         139         558.000         0.001         189         962.400         0.006           41         102.900         0.31         196.000 <t< td=""><td>32</td><td>90,000</td><td>0.005</td><td>81</td><td>169 400</td><td>0.012</td><td>130</td><td>440 000</td><td>0.001</td><td>179</td><td>904 700</td><td>0.006</td></t<>          | 32  | 90,000  | 0.005  | 81  | 169 400 | 0.012  | 130 | 440 000 | 0.001  | 179 | 904 700  | 0.006  |
| 34         92.000         0.016         83         178.100         0.027         133         445.500         0.001         181         911.600         0.001           35         94.000         0.008         84         179.000         0.027         133         446.500         0.001         181         911.600         0.001           36         95.000         0.117         85         180.000         0.127         133         446.500         0.001         183         930.600         0.003           37         97.300         0.001         86         181.000         0.041         135         497.900         0.001         183         930.600         0.003           38         98.200         0.012         87         182.200         0.031         136         507.900         0.001         185         952.300         0.001           39         99.200         0.003         89         193.500         0.041         138         545.100         0.002         187         956.000         0.001           40         102.000         0.034         90         195.000         0.085         139         558.000         0.003         188         960.700         0.001         <                                                                                                                                                                            | 33  | 90,900  | 0.068  | 82  | 176 000 | 0.012  | 131 | 441 000 | 0.001  | 180 | 906 200  | 0.006  |
| 35         94.000         0.008         84         179.000         0.027         133         446.500         0.001         182         926.400         0.016           36         95.000         0.117         85         180.000         0.127         133         446.500         0.001         182         926.400         0.003           37         97.300         0.001         86         181.000         0.041         135         497.900         0.006         184         937.100         0.001           38         98.200         0.012         87         182.200         0.031         136         507.900         0.001         185         952.300         0.001           39         99.200         0.003         88         184.100         0.020         137         543.200         0.003         186         954.300         0.006           40         102.000         0.034         90         195.000         0.085         139         558.000         0.003         188         960.700         0.001           41         102.900         0.344         92         197.100         0.003         141         570.600         0.001         189         962.400         0.002                                                                                                                                                                                     | 34  | 92,000  | 0.016  | 83  | 178 100 | 0.067  | 132 | 445.500 | 0.001  | 181 | 911,600  | 0.001  |
| 06         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01000         01                                                                                                              | 35  | 94 000  | 0.008  | 84  | 179 000 | 0.027  | 133 | 446 500 | 0.001  | 182 | 926 400  | 0.016  |
| 37         97.300         0.011         86         181.000         0.041         135         497.900         0.006         184         937.100         0.001           38         98.200         0.012         87         182.200         0.031         136         507.900         0.001         185         952.300         0.001           39         99.200         0.003         88         184.100         0.020         137         543.200         0.003         186         954.300         0.006           40         102.000         0.034         90         195.000         0.085         139         558.000         0.003         188         960.700         0.001           41         102.900         0.344         90         195.000         0.085         139         558.000         0.003         188         960.700         0.001           42         104.100         0.479         91         196.000         0.101         140         561.200         0.001         189         962.400         0.006           43         104.900         37.764         92         197.100         0.015         142         571.700         0.006         191         986.400         0.001                                                                                                                                                                                  | 36  | 95,000  | 0.117  | 85  | 180,000 | 0.127  | 134 | 477,900 | 0.001  | 183 | 930,600  | 0.003  |
| 38         98.200         0.012         87         182.200         0.031         136         507.900         0.001         185         952.300         0.001           39         99.200         0.003         88         184.100         0.020         137         543.200         0.003         186         954.300         0.006           40         102.000         0.003         89         193.500         0.041         138         545.100         0.002         187         956.000         0.000           41         102.900         0.034         90         195.000         0.885         139         558.000         0.001         188         960.700         0.001           42         104.100         0.479         91         196.000         0.101         140         561.200         0.001         189         962.400         0.006           43         104.900         37.764         92         197.100         0.003         141         570.600         0.001         190         968.400         0.002           44         105.900         3.105         93         209.100         0.115         142         571.700         0.001         192         999.300         0.033                                                                                                                                                                                 | 37  | 97,300  | 0.001  | 86  | 181.000 | 0.041  | 135 | 497,900 | 0.006  | 184 | 937,100  | 0.001  |
| 05         05.00         0.012         05.00         0.021         05.00         0.003         0.006         0.006           40         102.000         0.003         88         184.100         0.021         137         543.200         0.003         186         954.300         0.006           41         102.000         0.034         90         195.000         0.085         139         558.000         0.003         188         960.700         0.001           42         104.100         0.479         91         196.000         0.101         140         561.200         0.001         189         962.400         0.006           43         104.900         37.764         92         197.100         0.003         141         570.600         0.001         190         968.400         0.002           44         105.900         3.105         93         209.100         0.115         142         571.700         0.001         192         999.300         0.033           45         107.000         0.151         94         210.100         11.343         143         587.500         0.001         192         999.300         0.033           46         108.000                                                                                                                                                                                            | 38  | 98 200  | 0.012  | 87  | 182,200 | 0.031  | 136 | 507 900 | 0.001  | 185 | 952 300  | 0.001  |
| 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                        | 39  | 99,200  | 0.003  | 88  | 184,100 | 0.020  | 137 | 543,200 | 0.003  | 186 | 954.300  | 0.006  |
| 41         102.900         0.034         90         195.000         0.085         139         558.000         0.003         188         960.700         0.001           42         104.100         0.479         91         196.000         0.101         140         561.200         0.001         189         962.400         0.006           43         104.900         37.764         92         197.100         0.003         141         570.600         0.001         190         968.400         0.002           44         105.900         3.105         93         209.100         0.115         142         571.700         0.006         191         980.700         0.001           45         107.000         0.151         94         210.100         11.343         143         587.500         0.001         192         999.300         0.033           46         108.000         0.002         96         212.000         1.329         144         589.500         0.001         193         1000.000         0.001           47         108.900         0.022         96         212.000         1.329         145         592.600         0.001           49         10.0000                                                                                                                                                                                          | 40  | 102.000 | 0.003  | 89  | 193,500 | 0.041  | 138 | 545,100 | 0.002  | 187 | 956.000  | 0.000  |
| 12         104.100         0.479         91         196.000         0.001         140         561.200         0.001         189         962.400         0.002           43         104.900         37.764         92         197.100         0.003         141         570.600         0.001         190         968.400         0.002           44         105.900         3.105         93         209.100         0.115         142         571.700         0.006         191         980.700         0.001           45         107.000         0.151         94         210.100         11.343         143         587.500         0.001         192         999.300         0.033           46         108.000         0.002         96         212.000         12.085         144         589.500         0.001         193         1000.000         0.001           47         108.900         0.022         96         212.000         1.329         145         592.600         0.001                                                                                                                                                                                                                                                                                                                                                                                              | 41  | 102 900 | 0.034  | 90  | 195 000 | 0.085  | 139 | 558 000 | 0.003  | 188 | 960 700  | 0.001  |
| 13         104.900         37.764         92         197.100         0.003         141         570.600         0.001         190         968.400         0.002           44         105.900         3.105         93         209.100         0.115         142         571.700         0.006         191         980.700         0.001           45         107.000         0.151         94         210.100         11.343         143         587.500         0.001         192         999.300         0.033           46         108.000         0.002         96         212.000         12.085         144         589.500         0.001         193         1000.000         0.001           47         108.900         0.020         96         212.000         1.329         144         589.500         0.001         193         1000.000         0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42  | 104 100 | 0.479  | 91  | 196 000 | 0.101  | 140 | 561 200 | 0.001  | 189 | 962 400  | 0.006  |
| 44         105.900         3.105         93         209.100         0.115         142         571.700         0.006         191         980.700         0.001           45         107.000         0.151         94         210.100         11.343         143         587.500         0.001         191         990.700         0.001           46         108.000         0.008         95         211.000         12.085         144         589.500         0.001         193         1000.000         0.001           47         108.900         0.020         96         212.000         1.329         145         592.600         0.001         193         1000.000         0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43  | 104 900 | 37,764 | 92  | 197 100 | 0.003  | 141 | 570 600 | 0.001  | 190 | 968 400  | 0.002  |
| 45         107.000         0.151         94         210.100         11.343         143         587.500         0.001         192         999.300         0.033           46         108.000         0.008         95         211.000         12.085         144         589.500         0.001         193         1000.000         0.001           47         108.900         0.020         96         212.000         1.329         145         592.600         0.001           48         140.000         0.027         97         212.000         1.46         641.800         0.012 <td>44</td> <td>105 900</td> <td>3 105</td> <td>93</td> <td>209 100</td> <td>0.115</td> <td>142</td> <td>571 700</td> <td>0.006</td> <td>191</td> <td>980 700</td> <td>0.001</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 44  | 105 900 | 3 105  | 93  | 209 100 | 0.115  | 142 | 571 700 | 0.006  | 191 | 980 700  | 0.001  |
| 46         108.000         0.008         95         211.000         12.085         144         589.500         0.001         193         1000.000         0.001           47         108.900         0.020         96         212.000         1.329         145         592.600         0.001         193         1000.000         0.001           48         140.000         0.020         96         212.000         1.329         145         592.600         0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45  | 107.000 | 0.151  | 94  | 210,100 | 11.343 | 143 | 587.500 | 0.001  | 192 | 999.300  | 0.033  |
| 47         108.900         0.020         96         212.000         1.200         1.41         592.600         0.001           42         140.000         0.027         97         212.000         1.46         592.600         0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46  | 108.000 | 0.008  | 95  | 211 000 | 12 085 | 144 | 589,500 | 0.001  | 193 | 1000.000 | 0.001  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 47  | 108.900 | 0.020  | 96  | 212.000 | 1.329  | 145 | 592,600 | 0.001  | 100 |          | 0.001  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48  | 110 000 | 0.007  | 97  | 213 000 | 0.196  | 146 | 641 800 | 0.012  |     |          |        |
| 49 113,000 0.042 98 214,100 0.012 147 653,200 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49  | 113.000 | 0.042  | 98  | 214,100 | 0.012  | 147 | 653,200 | 0.001  |     |          |        |

Figura 157 – Espectro de Massas; Reação N,N-dimetilanilina com *AuCl*<sub>3</sub>; T.R.= 15.3; N-metil-fenil-benzamida (continuação)

| Count   | Count 227 Data Type Ce |            |               |           |            | Date 02 Jul 19 05:21 am |     |          |            |      |                  |        |       |
|---------|------------------------|------------|---------------|-----------|------------|-------------------------|-----|----------|------------|------|------------------|--------|-------|
| Inlet N | /ode/                  | GC         | Mass          | Spec Mode | Varian Sat | turn                    |     | 02.001.1 | Plot Type  |      | Stick            |        |       |
| Reten   | tion Time              | 16.567     | Scan          |           | 642        | TIC                     |     | 171.00   | Total Sign | al   | 11003762         |        |       |
| 2 N.N   | COM AUCLS              | 3 7-2-2019 | 1 Cer         | troid     | 105ㄱ       |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        | 7          | 77            |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
|         | 51 J                   |            |               |           |            |                         |     |          |            |      | <sup>198</sup> 7 |        |       |
|         | 1                      |            |               |           |            | 122 -                   |     |          |            | 181- | i i              |        |       |
|         |                        |            | . di          | 95 J      |            |                         |     | 153 ך    | ר170       |      |                  |        | 226 ح |
|         |                        |            |               |           |            |                         |     |          |            |      |                  |        |       |
| 40      |                        |            | 80            | 1111111   | 100        | 120                     |     | 140      | 160        | 180  | 2 2              | 00     | 220   |
| -0      |                        |            | 00            |           |            | 120                     | m/z | 140      | 100        | 100  | 2                |        |       |
| No.     | m/z                    | RI(%)      |               | DI        |            |                         |     |          |            |      |                  |        |       |
| 1       | 77.000                 | 32.493     | 209           | 0902.125  |            |                         |     |          |            |      |                  |        |       |
| 2       | 104.900                | 100.000    | 643           | 35013.500 |            |                         |     |          |            |      |                  |        |       |
| No.     | m/z                    | TIC(%)     | N             | lo. m/    | z TIC      | C(%)                    | No. | m/z      | TIC(%)     | No.  | m/z              | TIC(%) |       |
| 1       | 49.800                 | 0.900      | ٦Ľ.           | 17 73.9   | 00 0.4     | 453                     | 33  | 103.000  | 0.021      | 49   | 135.200          | 0.008  | -     |
| 2       | 50.900                 | 3.466      |               | 18 75.0   | 00 0.      | 280                     | 34  | 103.800  | 0.030      | 50   | 140.200          | 0.002  | -     |
| 3       | 51.800                 | 0.189      |               | 19 76.0   | 00 0.      | 729                     | 35  | 104.900  | 58.480     | 51   | 142.300          | 0.003  |       |
| 4       | 53.000                 | 0.142      |               | 20 77.0   | 00 19      | .002                    | 36  | 105.900  | 5.100      | 52   | 144.800          | 0.001  |       |
| 5       | 54.900                 | 0.061      | 1             | 21 78.0   | 00 1.      | 254                     | 37  | 106.900  | 0.231      | 53   | 151.900          | 0.057  |       |
| 6       | 58.600                 | 0.011      |               | 22 79.0   | 00 0.      | 149                     | 38  | 108.400  | 0.017      | 54   | 153.000          | 0.085  | _     |
| 7       | 61.000                 | 0.010      |               | 23 82.1   | 00 0.      | 003                     | 39  | 115.100  | 0.007      | 55   | 153.900          | 0.028  | _     |
| 8       | 61.900                 | 0.057      |               | 24 83.2   | 00 0.      | 001                     | 40  | 118.000  | 0.001      | 56   | 154.700          | 0.042  | _     |
| 9       | 63 900                 | 0.027      |               | 20 84.6   |            | 001                     | 41  | 121.000  | 0.001      | 5/   | 150.800          | 0.000  | -     |
| 10      | 65.000                 | 0.001      | $\neg \vdash$ | 20 89.0   |            | 001                     | 42  | 121.000  | 0.546      | 50   | 159.100          | 0.002  | -     |
| 12      | 65 900                 | 0.041      |               | 28 94.0   |            | 139                     | 43  | 123.000  | 0.088      | 60   | 171 400          | 0.009  | -     |
| 13      | 68.000                 | 0.001      |               | 29 96 0   | 00 0       | 002                     | 45  | 127.000  | 0.002      | 61   | 177.400          | 0.026  | -     |
| 14      | 69.300                 | 0.010      |               | 30 98.0   | 00 0.      | 020                     | 46  | 131.700  | 0.001      | 62   | 181.000          | 1.061  | -     |
| 15      | 72.400                 | 0.000      |               | 31 99.2   | 00 0.      | 001                     | 47  | 132.400  | 0.001      | 63   | 182.000          | 0.592  | -     |
|         |                        | 0.007      |               | 100       | 000 0      | 015                     | 10  | 124 200  | 0.015      | 64   | 192.000          | 0.059  | -     |

## n,n-dimetilanilina com AuCl3

Figura 158 – Espectro de Massas; Reação N,N-dimetilanilina com AuCl<sub>3</sub>; T.R.= 16.6; Desconhecido

| No. | m/z     | TIC(%) | No. | m/z     | TIC(%) | No. | m/z     | TIC(%) |
|-----|---------|--------|-----|---------|--------|-----|---------|--------|
| 65  | 184.300 | 0.003  | 133 | 532.300 | 0.001  | 201 | 899.000 | 0.001  |
| 66  | 186.500 | 0.026  | 134 | 539.200 | 0.005  | 202 | 910.800 | 0.001  |
| 67  | 189.600 | 0.002  | 135 | 540.100 | 0.001  | 203 | 912.200 | 0.001  |
| 68  | 190.600 | 0.003  | 136 | 542,500 | 0.001  | 204 | 913,700 | 0.001  |
| 69  | 191,500 | 0.003  | 137 | 555.000 | 0.001  | 205 | 915,200 | 0.001  |
| 70  | 192,600 | 0.004  | 138 | 557,600 | 0.001  | 206 | 919,100 | 0.001  |
| 71  | 195 000 | 0.059  | 139 | 563 700 | 0.001  | 207 | 924 600 | 0.001  |
| 72  | 195 900 | 0.184  | 140 | 579 200 | 0.001  | 208 | 933 800 | 0.001  |
| 72  | 196 700 | 0.104  | 141 | 584 100 | 0.001  | 200 | 934 500 | 0.001  |
| 74  | 197 800 | 3 526  | 142 | 585 100 | 0.001  | 210 | 936 900 | 0.001  |
| 74  | 109 900 | 0.422  | 142 | 596 900 | 0.001  | 210 | 930.900 | 0.001  |
| 76  | 202 100 | 0.432  | 143 | 588 600 | 0.001  | 217 | 940,800 | 0.003  |
| 70  | 202.100 | 0.001  | 144 | 500.000 | 0.001  | 212 | 940.800 | 0.001  |
| 70  | 210.000 | 0.040  | 145 | 590.000 | 0.001  | 213 | 943.900 | 0.001  |
| 70  | 212.400 | 0.020  | 140 | 594.900 | 0.001  | 214 | 945.400 | 0.001  |
| 79  | 217.100 | 0.005  | 147 | 600.300 | 0.001  | 215 | 947.100 | 0.001  |
| 80  | 219.500 | 0.001  | 148 | 605.300 | 0.001  | 210 | 949.600 | 0.001  |
| 01  | 220.200 | 0.001  | 149 | 610.900 | 0.001  | 217 | 950.700 | 0.001  |
| 82  | 222.500 | 0.001  | 150 | 612.400 | 0.001  | 218 | 974.700 | 0.001  |
| 83  | 223.300 | 0.001  | 151 | 623.100 | 0.006  | 219 | 975.600 | 0.001  |
| 84  | 225.100 | 0.019  | 152 | 629.800 | 0.001  | 220 | 976.500 | 0.001  |
| 85  | 225.900 | 0.096  | 153 | 631.700 | 0.001  | 221 | 981.300 | 0.001  |
| 86  | 228.100 | 0.001  | 154 | 637.000 | 0.001  | 222 | 982.100 | 0.001  |
| 87  | 230.500 | 0.001  | 155 | 651.700 | 0.011  | 223 | 991.500 | 0.001  |
| 88  | 231.900 | 0.001  | 156 | 652.600 | 0.001  | 224 | 993.800 | 0.001  |
| 89  | 248.400 | 0.000  | 157 | 662.800 | 0.001  | 225 | 994.800 | 0.000  |
| 90  | 251.600 | 0.001  | 158 | 664.900 | 0.000  | 226 | 996.300 | 0.001  |
| 91  | 255.800 | 0.001  | 159 | 672.700 | 0.000  | 227 | 997.200 | 0.001  |
| 92  | 256.600 | 0.001  | 160 | 673.400 | 0.001  |     |         |        |
| 93  | 262.400 | 0.001  | 161 | 678.400 | 0.001  |     |         |        |
| 94  | 271.100 | 0.007  | 162 | 688.800 | 0.001  |     |         |        |
| 95  | 277.200 | 0.001  | 163 | 693.700 | 0.001  |     |         |        |
| 96  | 278.200 | 0.001  | 164 | 694.500 | 0.001  |     |         |        |
| 97  | 297.200 | 0.001  | 165 | 706.900 | 0.001  |     |         |        |
| 98  | 299.000 | 0.001  | 166 | 708.000 | 0.001  |     |         |        |
| 99  | 314.500 | 0.001  | 167 | 709.000 | 0.022  |     |         |        |
| 100 | 322.900 | 0.001  | 168 | 710.100 | 0.000  |     |         |        |
| 101 | 332.200 | 0.012  | 169 | 713.900 | 0.001  |     |         |        |
| 102 | 335.500 | 0.001  | 170 | 715.300 | 0.001  |     |         |        |
| 103 | 372.000 | 0.001  | 171 | 720.900 | 0.001  |     |         |        |
| 104 | 400.700 | 0.001  | 172 | 730.900 | 0.001  |     |         |        |
| 105 | 401.800 | 0.001  | 173 | 739.700 | 0.001  |     |         |        |
| 106 | 403.000 | 0.001  | 174 | 741.700 | 0.001  |     |         |        |
| 107 | 405.700 | 0.009  | 175 | 743.500 | 0.001  |     |         |        |
| 108 | 427.600 | 0.001  | 176 | 759.000 | 0.003  |     |         |        |
| 109 | 433.100 | 0.001  | 177 | 762.400 | 0.001  |     |         |        |
| 110 | 436.500 | 0.009  | 178 | 777.600 | 0.001  |     |         |        |
| 111 | 438.400 | 0.001  | 179 | 787.000 | 0.001  |     |         |        |
| 112 | 442.900 | 0.001  | 180 | 788.400 | 0.001  |     |         |        |
| 113 | 455.400 | 0.001  | 181 | 793.600 | 0.001  |     |         |        |
| 114 | 456.200 | 0.001  | 182 | 798.900 | 0.001  |     |         |        |
| 115 | 457.500 | 0.001  | 183 | 804.400 | 0.001  |     |         |        |
| 116 | 459.900 | 0.001  | 184 | 808.000 | 0.001  |     |         |        |
| 117 | 464.300 | 0.001  | 185 | 808.900 | 0.001  |     |         |        |
| 118 | 482,400 | 0.001  | 186 | 809.700 | 0.000  |     |         |        |
| 119 | 483 200 | 0.001  | 187 | 819 300 | 0.001  |     |         |        |
| 120 | 485 700 | 0.007  | 188 | 820 400 | 0.001  |     |         |        |
| 121 | 489 500 | 0.001  | 189 | 822 600 | 0.001  |     |         |        |
| 122 | 490 800 | 0.001  | 190 | 824 600 | 0.001  |     |         |        |
| 122 | 510.000 | 0.001  | 101 | 829 300 | 0.001  |     |         |        |
| 123 | 511 700 | 0.007  | 102 | 839 100 | 0.001  |     |         |        |
| 124 | 516 500 | 0.002  | 102 | 840 000 | 0.001  |     |         |        |
| 120 | 524 200 | 0.001  | 193 | 040.000 | 0.001  |     |         |        |
| 120 | 524.200 | 0.001  | 194 | 040.300 | 0.001  |     |         |        |
| 127 | 525.900 | 0.007  | 195 | 040.000 | 0.001  |     |         |        |
| 128 | 527.200 | 0.007  | 196 | 800.400 | 0.001  |     |         |        |
| 129 | 528.500 | 0.001  | 197 | 868.400 | 0.001  |     |         |        |
| 130 | 529.200 | 0.001  | 198 | 884.500 | 0.001  |     |         |        |
| 131 | 530.000 | 0.001  | 199 | 885.200 | 0.001  |     |         |        |
| 132 | 531.200 | 0.001  | 200 | 887.600 | 0.001  |     |         |        |

Figura 159 – Espectro de Massas; Reação N,N-dimetilanilina com AuCl<sub>3</sub>; T.R.= 16.6; Desconhecido (continuação)

# \_\_\_\_APÊNDICE C FRAGMENTAÇÕES



Figura 160 - Fragmentação Ácido benzóico



Figura 161 - Fragmentação p-metóxibenzofenona







Figura 163 - Fragmentação Isopropoxibenzeno



Figura 164 – Fragmentação Benzil





m/z = 15













m/z = 105

m/z = 135



Figura 165 - Fragmentação o-isopropoxibenzofenona



Figura 166 - Fragmentação p-isopropoxibenzofenona



Figura 167 – Fragmentação N-metil-fenil-benzamida