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In this work, four mechanisms known in the literature for Dark Matter creation in the

early universe were analysed. The mechanisms were studied assuming simplified interactions

between the dark sector and the Standard Model. Numerical results were obtained using

the framework of Boltzmann equations for the relevant particle species. In addition, the

dependence of the Dark Matter relic abundance on the model parameters was investigated.

1. INTRODUCTION

The existence of Dark Matter (DM) has been hinted and corroborated by numerous experimental

data in the last century. Current estimates indicate that Dark Matter compounds 26,5% of our

Universe [1], which leads to questions about its formation and structure.

The first proof for Dark Matter presence emerged in 1932, with Jan Oort. When studying

the quantity and velocity of stars in the Milky Way, Oort noticed that the mass of visible stars

was too small to account for all the gravitating matter that was supposed to exist in this region,

implied by the velocities of the bodies near [2]. By analysing the Doppler shift the light emitted by

these stars suffered, he was able to calculate each star velocity, reaching the conclusion that these

stars were moving fast enough to escape the gravitational resistance of the galaxy. However, these

stars remained in their orbit, which could not be explained at the time. Oort considered possible

the existence of errors in the measurements of the stars’ masses, therefore providing a solution

in accord with the understanding of his time. He did not consider the existence of non-baryonic

matter.

Then, Fritz Zwicky (1933) independently noted that the velocities of stars found in the Coma

cluster required a mass density at least 400 times bigger than what was calculated from visible

matter to keep them in orbit [3]. By employing the Doppler shift technique to calculate the

velocities of the stars in the Coma cluster, he was able to find their kinetic energy, and hence, by

considering that the stars only interacted through Newtonian gravity, he obtained their potential
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energy through the Virial Theorem:

⟨K⟩ = −1

2
⟨U⟩ (1)

Using Newton’s Gravitational Law, he calculated the total mass for the cluster. However, Zwicky

overestimated the mass-to-light ratio (the total mass of the cluster divided by its luminosity) of

this cluster, by using a wrong value for the Hubble rate H0. In reality, the Coma cluster mass

would have to be 50 times bigger than the mass-to-light ratio evaluated to maintain its stars in

orbit. [4]. Three years later, Smith (1936) discovered that the same pattern could be found in the

Virgo cluster [5], where the mass calculated through the Virial Theorem was 1000M⊙ (M⊙ is the

mass of the Sun) larger than what was visible in the cluster.

Following this discovery, Babcock (1939), by analysing the spectra of the Andromeda galaxy,

found that the outer regions of the galaxy were rotating with a higher velocity than the center,

which could be explained by a higher mass-to-light ratio in the outskirts, or strong light absorption

by dust in the center [6].

Later, in the 1970s, Vera Rubin and her collaborators, after analysing the rotation curves of

67 emission nebulae (areas filled of hydrogen, whose atoms get excited by the radiation emitted

by young stars in the vicinity) in the Andromeda galaxy, found the same result. According to the

classical prediction:

v(r) =

√
Gm(r)

r
, (2)

where m(r) is the mass enclosed inside radius r. The results found in Rubin’s work implies that,

as r grows, m(r) must increase as well [7].

Also in the 1970s, the gravitational lensing technique was discovered. This method is derived

from Einstein’s General Relativity, and consists of observing the path of a light ray passing close

to a massive object. The mass will bend the space-time fabric, altering the path of light. This

mechanism not only allows for the measurement of a galaxy total mass, but also how this mass is

distributed throughout the space [8]. Bergmann, Petrosian and Lynds (1990) found that, for the

Abell 370 cluster, the mass-luminosity ratio should be bigger by a factor of 102 - 103 M⊙/L⊙ to

account for all the mass encountered through lensing [9]. The same pattern was found in other

clusters and galaxies, in the last years [10].

Important evidence also came from the merging of the Bullet galaxy cluster (1E 0657-56). Two

different galaxy clusters approached each other and collided. The majority of their baryonic matter
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exists as super hot gas inside both bodies, that was heated up by the collision and emitted a huge

amount of X rays, which were observed by the Chandra Observatory. The gas was slowed down

due to fluid resistance, reducing its initial velocity. However, comparing these observations with

gravitational lensing shows that the majority of the clusters’ mass is not in the gas region, but

following the predicted paths for both bodies, if the collision had not occurred, with the same initial

velocity. Therefore, it is necessary that more mass is ’hidden’ to account for the gravitational pull

observed, and that this mass does not interact with baryonic matter [11]. The same pattern was

observed by Bradač et al (2008) in the merging cluster MACS J0025.4-1222 [12].

While cosmological techniques have enabled many discoveries about Dark Matter properties,

such as its current low temperatures [13], and its distribution on our Universe, its non-gravitational

properties remain a mystery, such as its mass and the interactions it participates in. Different

theoretical models were proposed to explain how particle Dark Matter interacts, both with the

Standard Model and with possible additional particles in the dark sector, as well how these reactions

would affect the formation of cosmological structure [14–16].

In this work, we discuss some of the most popular mechanisms found in literature for production

of the observed Dark Matter relic density, focusing specifically in Dark Matter as a thermal relic.

To achieve this objective, we derive the relevant Boltzmann equations, which allows us to calculate

the Dark Matter population as a function of temperature. In Sec. 2 we briefly review the Standard

Model and the Standard Cosmological Model, and the necessary formalism for developing the

Boltzmann equations in Sec.3. Sec.4 is dedicated to the discussion of four production mechanisms:

freeze-out, co-annihilation, conversion driven freeze-out and freeze-in. Finally, in Sec.5, we present

our conclusions. Appendix A contains a detailed derivation of the Boltzmann equations presented

in Sec. 3.

2. FUNDAMENTAL CONCEPTS

2.1. Standard Model

Despite all the proof about Dark Matter existence mentioned previously, particle Dark Matter

properties remain unknown, as well as how it could interact with the already known particles. The

discovered particles that exist in our Universe compound what is called the Standard Model.

The Standard Model (SM) is a framework that aims to describe all the existing particle species

in the Universe, and how they interact with each other. It explains successfully the experimental
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data observed in colliders and observatories, and allows for a better understanding of the forces

that run our Universe. The model considers 3 fundamental forces, that cause particles to interact:

the electromagnetic force, the weak nuclear force, and the strong nuclear force. Note that despite

its huge success, the SM does not include the gravitational force. It also considers the existence

of several fundamental particles, that can not be subdivided into smaller pieces. These can be

separated in two groups: the fermions and the bosons.

The fermions are particles with a half-integer spin, and are responsible for building matter.

They can also be subdivided in two groups: the quarks and the leptons. There are 6 quarks,

that compose 3 generations: the up and the down (first generation), the charm and the strange

(second generation), the top and the bottom (third generation). The generations have very different

mass ranges, with the first generation being the least massive. Due to this, the first generation

is the only stable one (it does not decay in other particles), and is responsible for forming all the

ordinary matter on Earth. The second and third generations decay rapidly, and can only be found

in high energy environments. The quarks are always found in the form of hadrons, consisting of

two quarks (mesons) or three quarks (baryons), held together by the strong nuclear force. The

baryons are responsible for forming the majority of the known matter, thus the ordinary matter is

called Baryonic Matter. The two most important baryons are the proton and the neutron. Besides

the strong nuclear force, the quarks also interact through the weak force and the electromagnetic

force. Each quark also has its own anti-quark, which has the same mass but opposite charge of the

original quark. When a particle and a antiparticle react, they annihilate each other, and release

energy.

There are 3 charged leptons: the electron, the muon and the tau. As occurs with the quarks,

only the first generation lepton (electron) is stable due to its smaller mass, and is responsible

for forming atoms. The muon and the tau both decay rapidly, and are only seen in high energy

backgrounds. The leptons interact through the weak nuclear force (responsible for particle decay)

and the electromagnetic force. Each charged lepton also has a corresponding neutrino: the electron

neutrino, the muon neutrino and the tau neutrino. The neutrinos are very light particles with

neutral charge, that only interact through the weak nuclear force. Hence, the neutrinos are very

hard to be detected.

The other group of the Standard Model are the bosons, particles with a integer spin. Bosons

are force carriers, responsible for transmitting the three fundamental forces, and mediating the

interaction between the fermions. The photon is the boson related to the electromagnetic force,

while the W±, Z0 are responsible for the weak force and the gluons mediate the strong force.
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Finally, the Higgs boson is responsible for generating mas to the weak bosons and the fermions

(with the exception of neutrinos).

Despite all its structure, the Standard Model is not complete, and does not account for the

existence of Dark Matter. Hence, the experimental observations that point to the presence of DM

also hints to the fact that the Standard Model needs to be expanded.

2.2. Standard Cosmological Model

Another important model used to describe our Universe is the ΛCDM model, also known as

the Standard Cosmological Model, that details how our Universe behaves, along with its history.

It considers the Universe to be comprised of four main components: radiation, baryonic matter,

cold dark matter (CDM), and a cosmological constant Λ, which will be explained later. This

framework considers that, at large scales, the Universe is homogeneous, isotropic and flat, with the

large extensions of vacuum compensating for the matter clumps, which known as the Cosmological

Principle (CP). Lastly, it assumes that Einstein’s General Relativity Theory correctly describes

the way gravitational interactions occur, and that the Big Bang theory correctly delineate how our

Universe began [17]. We shall analyse the main features of this model.

The Big Bang theory conveys a Universe with a changing size. The first evidence that our

Universe is expanding came from the observations of Edwin Hubble. Stars and nebulae emit light

in specific wavelengths, determined by their chemical composition. Those are the emission lines,

caused by electron excitation. Hubble noticed that the light coming from distant bodies presented

a shift in its emission lines, making the stripes closer to the red side of the visible spectrum [18].

This phenomenon was nominated redshift, usually quantified by the parameter z:

1 + z =
λobserved

λemitted
(3)

Hubble’s biggest achievement was noticing that the redshift in the observed spectrum means

that the light emitter is moving away from Earth, which would be expected in an expanding

Universe. He also realized that the velocity with which the object is moving away is proportional

to the distance d between the object and Earth:

v = H0d, (4)
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FIG. 1: A visual representation of how the distance of two objects change with Universe

expansion. The comoving distance between points x1 and x2 remains 1, but the grid size

increases with time [19].

where H0 represents the Hubble rate, and the 0 subscript indicates its current value. Hence, further

away galaxies have higher velocities.

In order to understand the above relation it is useful to introduce the scale factor a, which

increases with time. It is used to express how the distance d between two objects change as times

passes:

d(t) = a(t)d(t = 0) (5)

By convention, we set a = 1 today. The way the scale factor behaves with time is determined

by the Friedmann Equation, derived from Einstein’s General Relativity by Alexander Friedmann

[20] (which is in accordance with the ΛCDM assumptions of isotropy and homogeneity):

H2 =

(
ȧ

a

)2

=
8πG

3
ρ(t)− κ

R2
0a

2
, (6)

where ρ(t) represents the total energy density of the Universe and G is the Newtonian Constant

of Gravitation. For this equation, and for the following analysis, we adopt the usage of natural

units (c = ℏ = 1). The second term relates to the geometry of our Universe: κ > 0 represents

an elliptical geometry, κ = 0 an Euclidean geometry, and κ < 0 an hyperbolic geometry. Finally,

R0 is the curvature radius for the Universe. According to recent estimates, cosmological evidence

points that our Universe is very close to flat [1], as considered in the ΛCDM model. Hence, from

now on, we take κ = 0.
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Using Eq. 6 and computing the second derivative of the scale factor:

ȧ = Ha ⇒ ä = ȧH + a
dH

dt
(7)

But:

H =

√
8πG

3
ρ(t) ⇒ dH

dt
=

1

2
H

ρ̇

ρ

⇒ ä = ȧH + a
H

2

ρ̇

ρ

⇒ ä =
ȧ2

a
+

ȧ

2

ρ̇

ρ
, (8)

where we have used ȧ = Ha in the last step. Therefore, in order to determine a(t) we must also

determine how the energy density evolves with time.

The time evolution of ρ can be determined under some simplifying assumptions. We begin by

considering the First Law of Thermodynamics:

dQ = dU + dW (9)

where dQ is the heat that enters or exits a specific region in space, dU is the energy variation in

this determined region, and dW is the work made inside this area. If we consider this volume to

be expanding, we can write:

dW = PdV ⇒ dQ = dU + PdV, (10)

where P is the system’s external pressure, and dV represents the change in volume.

If our Universe is homogeneous, then there is no relevant flow of heat into any region in space.

Therefore dQ = 0, and the expansion is an adiabatic process. Consequently, the expansion does

not increase entropy, which would be expected if we assume that the total entropy in our Universe

is constant (entropy density, however, still changes due to the expansion).

Therefore:

dU + PdV = 0 (11)

If we choose our system to be a sphere of radius R(0) = 1, that changes with time as R(t) =

R(0)a(t) = a(t), its volume will be:

V =
4

3
πa(t)3 ⇒ dV = 4πa(t)2

da(t)

dt
(12)
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Choosing the energy density of this area to be ρ, the total internal energy U inside this sphere

is:

U =
4

3
πa(t)3ρ ⇒ dU = 4πa(t)2

da(t)

dt
ρ+

4

3
πa(t)3

dρ

dt
(13)

Finally, substituting Eqs.12 and 13 in Eq.11:

4πa(t)2ȧ(P + ρ) +
4

3
πa(t)3ρ̇ = 0

⇒ ρ̇+ 3
ȧ

a
(P + ρ) = 0 (14)

This is the Fluid Equation, and it defines how the Universe’s energy density and pressure

changes with time. Combining Fluid Equation with Friedmann Equation, we obtain:

ä

a
=

−4πG

3
(ρ+ 3P ) (15)

which determines how the Universe acceleration evolves with time.

From this equation, it is possible to see that, if both energy density (ρ) and pressure (P ) are

positive, then Universe expansion should be slowing down. However, from observations of galaxy

velocities, we know this is not true. The expansion rate is actually increasing with time. This is

hinted by observations of Type Ia Supernovae, as shown by Riess et al. (1998) [21] and Perlmutter

et al (1997) [22]. By analysing the redshift and the brightness of distant Type Ia Supernovae, they

noted that, in the distant past (high redshift), the distance between the Earth and the Supernovae

are larger than would be expected if the expansion rate H was constant. Hence, the expansion

must be accelerating.

Today, the main theory to explain this acceleration phenomenon is Dark Energy [23]. In the

ΛCDM model, Dark Energy is a cosmological constant Λ, related to an intrinsic vacuum energy

[24]. Analysis of anisotropies present in the Cosmic Microwave Background (CMB) predict that

almost 68% of our Universe is made of Dark Energy [25].

The ΛCDM model considers that our Universe is made of 31% of matter (both baryonic and

dark), 68% of Dark Energy (as mentioned previously), and the rest of radiation. However, this

scenario was not always true. Right after the Big Bang, the Universe was dominated by radiation.

In order to understand how the densities of each component and scale factor evolved during

these times, we must first determine how the pressure is related to the energy density. For a

non-relativistic and ideal gas we can use the perfect gas law:

PV = NkT ⇒ P =
N

V
kT (16)
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where k is Boltzmann’s constant, T the gas temperature and N/V = n the particle density. But,

from the kinetic theory:

3kT = m⟨v2⟩ (17)

being ⟨v2⟩ the root mean square thermal velocity of the particles and m their mass. Since for

non-relativistic particles v ≪ 1, we have kT ≃ 0 and therefore:

P ≃ 0 (non-relativistic gas) (18)

In the case of a gas of photons, its energy density is given by [26]:

ρ = n⟨E⟩ = np and 3kT = p (19)

where p is the average 3-momentum of the particles. Therefore:

ρ = 3(nkT ) = 3P

⇒ P = 1
3ρ (relativistic gas) (20)

Lastly, for Dark Energy we assume [24]:

P = −ρ (Dark Energy) (21)

All the above gases can be parameterized as:

P = wρ (22)

where w = 0, 1/3,−1 for matter, radiation and Dark Energy, respectively.

Using the above results, we can finally integrate the Fluid Equation:

ρ(t) =

∫
ρ̇dt =

∫
−3

ȧ

a
(P + ρ)dt (23)

Then, using Eq. 22, we obtain:

ρ(t) =

∫
−3

ȧ

a
ρ(1 + w)dt (24)

Therefore:

∫
1

ρ

dρ

dt
dt =

∫
−3(1 + w)

a

da

dt
dt (25)
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log

(
ρ

ρ0

)
= −3(1 + w) log

(
a

a0

)
(26)

Using logarithms properties:

log

(
ρ

ρ0

)
= log

(
a

a0

)−3(1+w)

(27)

→ ρ = ρ0

(a0
a

)3(1+w)
(28)

Hence:

ρM = ρM,0

(a0
a

)3
(matter)

ρR = ρR,0

(a0
a

)4
(radiation)

ρDE = ρDE,0 (Dark Energy) (29)

Through this, we can see that radiation density decreases faster than matter density, and that

dark energy density is constant. The difference between the expressions for radiation and matter

densities can be explained through redshift. As the Universe expands, the wavelength of radiation

increases by a factor a. But the energy of a wave is given by:

E =
2π

λ
(30)

where λ is its wavelength. Therefore, as the wavelength increases by a factor a, the energy decreases

by the same factor a. So, radiation energy density decreases by the variation of the total volume

of the Universe, but also by the redshift it suffers in this process.

Today, the measured energy densities, for radiation, baryonic matter, Dark Matter, and Dark

Energy are, respectively [1]:

ρR ≈ 4.64× 10−34GeV4

ρBM ≈ 4.20× 10−31GeV4

ρDM ≈ 2.25× 10−30GeV4

ρDE = 5.83× 10−30GeV4 (31)

Employing these values and knowing how each density changes with a, we are able to estimate

the initial energy densities ρ0, and analyse how ρTOTAL changed with time. The result is that,
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Now

FIG. 2: Energy densities of radiation, matter and dark energy through time, since the Big Bang.

for the approximate first 50 thousand years after the Big Bang, the Universe was dominated by

radiation [1]. Afterwards, we arrive at a point where matter and radiation had the same density,

known as the matter-radiation equality. Following this moment, we enter an era where the dominant

component of the Universe was matter. Lastly, when the Universe was approximately 8 billion years

old, dark energy density became bigger than matter density. This evolution can be seen in Fig. 2.

Since, from Eq. 15 we have that the rate of expansion and its acceleration depend on the ρ and

P , as ρ changes with time, the velocity of the expansion of our Universe changes as well. Therefore,

the different Eras of the Universe have different expansion rates, and specific characteristics that

come with it, as can be seen in Fig. 3.

According to the Big Bang theory, the Early Universe was much smaller and incredibly denser

than nowadays, with extremely high temperatures. It was populated by Standard Model particles,

along with particles that have not been discovered yet (among them, the DM particle). The energy

density was considerably large, which lead Standard Model particles to have great velocities, hence

being relativistic. This made it impossible for particles to form stable nuclei or atoms, meaning

that all matter existed in a plasma of leptons, quarks and gluons. The reaction rate Γ of these

particles was much larger than the Hubble expansion rate H, allowing thermal equilibrium to be



12

FIG. 3: Scale factor a per time, since Big Bang

maintained in the thermal bath [27].

2.3. Equilibrium Thermodynamics

A particle species is said to be in thermal equilibrium when its reaction rate Γ is bigger than

the Hubble expansion rate H, implying that particles are able to react before they are separated

due to Universe expansion. When the thermal bath is in equilibrium, its energy is uniformly

distributed throughout all of its components, determining some of the species properties, such as

number density n:

n =
g

(2π)3

∫
f(p⃗)d3p (32)

where g is the number of internal degrees of freedom and f(p⃗) is the species phase space occupancy.

The internal degrees of freedom of a particle species is the number of variables that can be

altered without breaking any constraints of the system. For an electron in a Hydrogen atom, the

spin is an internal degree of freedom: both spin-up and spin-down cases are possible. The phase

space is a space that contains all the possible states for the particles in the system in consideration.

In this context, the phase space occupancy describes how many particles are in each possible state,

labeled according to their momentum p⃗.

In a reaction a+b ↔ c+d, both directions of the reaction will exchange energy and momentum.

When both directions exchange energy and momentum at the same rate, thus maintaining the total

energy and momentum of all the interacting species constant (i.e. the total energy and the total

momentum of a, b, c, d are not altered due to the reaction), these particles are said to be in kinetic

equilibrium.



13

For the case of a species in kinetic equilibrium, the phase space occupancy is given by:

f(p⃗) = [exp((E + µ)/T )± 1]−1 (33)

where the + sign stands for Fermi-Dirac statistics and the − sign stands for Bose-Einstein statistics.

The parameter µ represents the particle’s chemical potential. It stands for the rate of change in

the systems free energy when the species particle number is altered, while maintaining the pressure

and the temperature constants. If we consider a reaction:

a+ b ↔ c+ d (34)

the particles’ chemical potential will define which direction of the reaction will prevail. If µa +

µb > µc + µd, reaction a + b → c + d will occur more frequently than its opposite direction. If

µa+µb < µc+µd, reaction c+d → a+b will take place more often than the other possible direction.

If µa + µb = µc + µd, the system is said to be in chemical equilibrium, and both directions will

balance each other, keeping the populations of a, b, c, d constant. For the following calculations, we

assume chemical equilibrium, and therefore neglect the effect of µ.

Using Eq. 33 in Eq. 32:

n =
g

(2π)3

∫
1

exp(E/T )± 1
d3p

=
g

(2π)3

∫
4πp2

exp(E/T )± 1
dp (35)

For a relativistic species (m ≪ p⃗), E ≃ p, and the phase space occupancy is given by:

f(p) = [exp(p/T )± 1]−1 (36)

Therefore, Eq. 35 for a particle i becomes:

n =
g

(2π)3

∫ ∞

0

4π|p|2

exp(p/T )± 1
dp

 3
4
ζ(3)giT

3

π2 fermions

ζ(3)giT
3

π2 bosons
(37)

where ζ is the Zeta Riemann function.

For any p⃗ value, our phase space occupancy is given by:

f(p⃗) = [exp(E/T )± 1]−1 = [exp((
√

p2 +m2)/T )± 1]−1 (38)

It is useful to rewrite Eq. 35 with a variable transformation p =
√
E2 −m2:

n =
g

2π2

∫ ∞

m

√
(E2 −m2)

exp(E/T )± 1
EdE (39)
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In a semi-relativistic regime (m ≃ p⃗), exp(E/T ) is much bigger than 1, so we can neglect the ±1

term, and approach that, at this regime, the number density at equilibrium is the same for fermions

and bosons. Then, we define x = E/m, dx = dE/m:

n =
g

2π2

∫ ∞

1

√
(x2 − 1)

exp(xmT )
xm3dx

=
g

2π2

∫ ∞

1
m3 d

dz

(√
x2 − 1

exp(xz)

)
dx (40)

where z = m/T . In this form, we can write:∫ ∞

1

(√
x2 − 1

exp(xz)

)
=

K1(z)

x
(41)

where K1 is the modified Bessel function of second kind, in the first degree.

n =
g

2π2
m3 d

dz

K1(z)

z
=

g

2π2
Tm2K2

(m
T

)
(42)

where K2 is the modified Bessel function of second kind, in the second degree.

This result is valid for any case when exp(E/T ) is much bigger than 1.

In a non-relativistic regime (m ≫ T ), the condition exp(E/T ) ≫ 1 is still valid. In this case,

using a series expansion at m → ∞:

K2(m/T ) → exp(−m/T )

√
πT

2m
(43)

Hence, for a particle i in equilibrium, in a non-relativistic regime:

ni = gi

(
miT

2π

)3/2

exp(−mi/T ) (44)

An important concept to analyse in the Early Universe is entropy. Entropy is the quantity that

measures how disorganised is the system, or, how much of its energy is inaccessible to be turned

into work. According to the Second Law of Thermodynamics, the entropy variation caused in a

system by a spontaneous process (i.e. where there is no external influence in the system) must

always be positive ∆S ⩾ 0. Hence, if we model our Universe as a system, its entropy must always

increase or remain constant (once there are no external agents acting on the system).

When a process increases the entropy in the system, it is increasing the fraction of the system’s

energy that can not be turned into work. Thus, this process is irreversible, once it is not possible

to revert this energy into an accessible state. A process that maintains the entropy constant is a

reversible process, once it is possible to undo the transformation without breaking any constraint.
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All the reactions taking place in the plasma are reversible reactions, therefore they do not change

the entropy of the system, and the entropy in the plasma is conserved.

In the Radiation Epoch, when the Dark Matter candidates we will analyse were created, entropy

density is given by:

s =
2π2

45
g∗s(T )T

3 (45)

where g∗s are the relativistic degrees of freedom associated with entropy:

g∗s =
∑

bosons

gi

(
Ti

T

)3

+
7

8

∑
fermions

gi

(
Ti

T

)3

(46)

where T is the temperature of the plasma. Our Universe, as a system, has an entropy value

proportional to its temperature. This total value of entropy is formed by contributions from

each particle species’ entropy, which depends on the particle’s internal degrees of freedom. The

relativistic degrees of freedom associated with entropy g∗s represent a sum over all the internal

degrees of freedom of each relativistic species (i.e. a sum over all the variables that do not affect

entropy and that can be altered in each relativistic particle species without breaking any of the

system’s constraints). Each particle species’ total entropy is proportional to the number of their

internal degrees of freedom, thus, the total entropy in the Early Universe (when the majority of

the Universe contents where relativistic particles) is proportional to g∗s. We can approach g∗s as

[28]:

g∗s = 100, T ≳ 200MeV

g∗s = 10, 200MeV > T ≳ 0.1MeV

g∗s = 3, 0.1MeV > T

(47)

During the Radiation Era, the Universe was dominated by radiation, which allows us to write

[19, 24]:

ρtotal ≃ ρradiation ⇒ ρtotal =
π2

30
g∗(T )T

4 (48)

⇒ T (t) =

(
45

32π2

)1/4 TP√
tP

√
2H0

a(t)

where TP = 1.41× 1032 K is the Planck temperature, tP = 5.39× 10−44 s is the Planck time, H0 =

67.4 km/s Mpc is the Hubble rate value today, and g∗ is the effective number of relativistic degrees

of freedom, which depends on the temperature. As mentioned previously, in a thermodynamic

system, the number of degrees of freedom is the number of variables that can be modified in
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a system, without breaking any constraints. For our Universe, we have an effective number of

degrees of freedom, which sums over the internal degrees of freedom of all the existing particle

species, to analyse how many variables inside our Universe can be modified without breaking any

laws. The effective number of relativistic degrees of freedom takes this sum over the internal degrees

of freedom of relativistic species, solely:

g∗ =
∑

bosons

gi

(
Ti

T

)4

+
7

8

∑
fermions

gi

(
Ti

T

)4

(49)

where T is the temperature of the plasma. g∗ changes with temperature, because, as the temper-

atures diminish, particles go from a relativistic regime to a non-relativistic one, once their mass is

bigger than their temperature. When all the relativistic particles are in equilibrium (i.e. Ti = T ),

g∗ ≃ g∗s, once their contribution to the total entropy in the Universe also depends on their internal

number of degrees of freedom. This is the case for the Early Universe, when particles fall out of

equilibrium with the plasma soon after they transition to a non-relativistic regime. Hence, for the

Standard Model, the effective number of relativistic degrees of freedom can be approached in the

same procedure as for g∗s [28]:

g∗ = 100, T ≳ 200MeV

g∗ = 10, 200MeV > T ≳ 0.1MeV

g∗ = 3, 0.1MeV > T

(50)

When all the relativistic particles are in equilibrium (i.e. Ti = T ), g∗ ≃ g∗s, once their contribution

to the total entropy in the Universe also depends on their internal number of degrees of freedom.

This is the case for the Early Universe, when particles fall out of equilibrium with the plasma soon

after they transition to a non-relativistic regime.

With these values of ρ and g∗, we can find the values of Hubble rate in this era, through the

Friedman Equation:

H2 =
8πG

3
ρ(t)

H2 =
8πG

3

π2

30
g∗(T )T

4

⇒ H =

√
8π3G

90
g∗(T )T

2 (51)

Now that we know how the Universe expansion behaved during Dark Matter production, we

need to develop a tool to analyse how the DM density changed with time.
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3. BOLTZMANN EQUATION

If the number of Dark Matter particles were constant in our Universe, then DM number density

would diminish proportionally to the Universe expansion, as n ∝ a−3(t). However, the total

number of DM particles is not constant. It can be modified through different interactions, such

as self-annihilation (2 DM particles collide and are destroyed), co-annihilation (the DM particle

collides with another particle, and both are destroyed), or the decay of other particles (a new

particle, more massive than DM, decays and creates a new DM particle). Therefore, we need a

tool to study how such interactions affect the total number density of DM.

In 1872, the Austrian physicist Ludwig Boltzmann published an important paper, where he

developed an equation to analyse how the atoms of a diluted gas behave in a system approaching

equilibrium. This paper supplied the mathematical basis to describe how the distribution function

of a gas changes with time, which also details how the number and energy density of the ensemble

operate [29]. Boltzmann’s equation assumes [30]:

• The gas’ state can be described by a distribution function f , that depends on the time and

on each particle’s position and velocity.

• The system’s particles are modeled as small point-like bodies, and their potentials are spher-

ically symmetric.

• The species number density is sufficiently small, thus we can neglect interactions that have

three or more components reacting, such as A + B + C → D + E, with the exception of

many-body decays.

• The reaction time between particles is much lower than the total time analysed.

If we consider the Dark Matter number density to be low enough for it to be modeled as a gas,

we can use Boltzmann’s Equation to analyse how the DM density changes with time.

The evolution of a particle i’s number distribution in the ΛCDM Model (a flat, isotropic,

homogeneous and expanding Universe, where the expansion is accelerating with time) is described

by the Boltzmann Equation [31, 32] as:

∂Fi(p, t)

∂t
−Hp

∂Fi(p, t)

∂p
= Ci(Fi, Fj , p) (52)

where Fi(p, t) is the number distribution for particle i with momentum p, H is the Hubble constant,

and C is a collision term that represents all the interactions that can modify the momentum
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distribution of particle i. This term usually depends on the distributions of other particle species

(j), which interact with particle i.

Multiplying all terms by p2, and integrating:

∫
∂Fi(p, t)

∂t
p2

dp

2π2
−
∫

Hp3
∂Fi(p, t)

∂p

dp

2π2
=

∫
Ci(Fi, Fj , p)p

2 dp

2π2
(53)

The second term can be integrated by parts:

H

∫ ∞

0
p3

∂Fi(p, t)

∂p

dp

2π2
=

H

2π2

[
p3Fi(p, t)−

∫ ∞

0
3p2Fi(p, t)dp

]
(54)

p3Fi(p, t) vanishes at 0 and ∞ [19], so:

=
−H

2π2

∫ ∞

0
3p2Fi(p, t)dp (55)

turning Eq. 52 into:

∫
∂Fi(p, t)

∂t
p2

dp

2π2
+

3H

2π2

∫ ∞

0
p2Fi(p, t)dp =

∫
Ci(Fi, Fj , p)p

2 dp

2π2
(56)

Given the number distribution Fi(p, t), we can compute the total number density (ni(t)):

ni(t) =

∫
Fi(p, t)p

2 dp

2π2
(57)

We can integrate Eq. 57, and obtain [19]:

dni

dt
+ 3Hni =

∫
Cip

2 dp

2π2
(58)

The left side of Eq. 58 accounts for the expansion of our Universe, while the right side represents

the interactions DM participates. The collision term for particle i can usually be split into three

terms:

Ci = Cannihilation + Cproduction + Cdecay (59)

where the contributions for this expression come from the different processes particle i can partici-

pate in. A detailed derivation of each term and their contributions to Eq. 58 is given in Appendix A.

The second term on the left hand side of Eq. 58 represents the dilution of the number density

n due to the Universe expansion. In the following we will assume the radiation dominated era, so
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this dilution is determined by the total radiation density. In order to study the changes in density

due to the collision terms (right hand side of Eq. 58), it is useful to define the yield:

Yi =
ni

s
(60)

where s is the entropy density. Since we assume conservation of entropy, s is only effected by

the Universe expansion. Hence, by dividing n by another density, we cancel the effects of Universe

expansion, and the yield will be proportional to the total number of Dark Matter particles in the

Universe. When particle i is in thermal equilibrium (Γ > H), it’s yield is given by:

Y i =
ni

s
(61)

in which case we can use the expressions in Eq. 42, Eq. 37 and Eq. 44.

It is also convenient to use a dimensionless parameter to track the evolution of densities. For

our purposes we define:

x ≡ mχ

T
(62)

Since for T ≳ mχ (T ≲ mχ) the DM particles are relativistic (non-relativistic), values of x less

than one correspond to the non-relativistic regime. In particular, we can assume:

x ≤ 2/3 , relativistic regime

2/3 < x ≤ 10 , semi-relativistic regime

10 < x , non-relativistic regime

(63)

In addition to the Dark Matter particle, some of the mechanisms we will discuss also assume

the existence of a second beyond the Standard Model particle (Z), which interacts with DM. In

this case the final Boltzmann Equation for the DM and Z are (see Appendix A):

dYχ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩χχ(Y 2

χ − Y
2
χ)− ⟨σv⟩χZ(YχYZ − Y χY Z) +

K1(mZ/T )

K2(mZ/T )

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)
+
ΓZ→χ

s

(
YZ − Y Z

Yχ

Y χ

)
+ ⟨σv⟩ZZ→χχ

(
Y 2
Z

Y
2
Z

−
Y 2
χ

Y
2
χ

)]
(64)

dYZ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩ZZ(Y

2
Z − Y

2
Z)− ⟨σv⟩χZ(YχYZ − Y χY Z)−

K1(mZ/T )

K2(mZ/T )

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)
−
ΓZ→χ

s

(
YZ − Y Z

Yχ

Y χ

)
− ⟨σv⟩ZZ→χχ

(
Y 2
Z

Y
2
Z

−
Y 2
χ

Y
2
χ

)]
(65)



20

where Kn are the modified Bessel functions of second kind and Y i are the equilibrium yields,

which depends on the m/T ratio and were defined in Eq. 42, Eq. 37 and Eq. 44. The first term

in Eq. 64 accounts for self-annihilation of Dark Matter, χ + χ ↔ SM + SM , and is illustrated

by the diagram Fig. 4.1; the second term represents co-annihilation between χ and Z (Fig. 4.2),

in χ + Z ↔ SM + SM ; the third term corresponds to the decay and inverse decay processes,

Z ↔ χ + SM (Fig. 4.2); the fourth term represents conversion of Z particles to DM particles

through the process Z+SM ↔ χ+SM (Fig. 4.4); lastly, the fifth term amounts to the annihilation

of Z particles to DM particles, Z + Z ↔ χ+ χ (Fig. 4.5).

χ

χ

SM

SM

SM

SM

χ

Z

Z

χ

SM

χ

SM

SM

Z

χ

χ

Z

Z

Z

Z

SM

SM

(1) Self-annihilation of χ (〈σv〉χχ) (2) Co-annihilation of χ-Z (〈σv〉χZ) (3) Decay of Z (ΓZ)

(4) Conversion of Z to χ 
(ΓZ→χ)

(5) Double conversion of χ-Z (〈σv〉ZZ→χχ) (6) Self-annihilation of Z (〈σv〉ZZ)

FIG. 4: Feynman diagrams for all the interactions considered for the derivation of Eq. 64 and Eq.

65.

The ds/dx ratio compensate for alterations on s, caused by Universe expansion. Using the

expression for entropy density in Eq. 45:

ds

dx
= −6π2

45
g∗s(x)

m3
χ

x4
(66)

4. RESULTS

In this section, we shall analyse different mechanisms for DM production. Our objective is

to understand how these models work, what are their suppositions about DM and about the

particles it interacts with (in this case, the Z particle), what are their main characteristics, and

how they respond when we alter the model’s main parameters. We are interested in studying which
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mechanisms can supply the abundance of Dark Matter we see today in our Universe, and which

constraints they impose in the DM mass and interactions.

For simplicity, in all the results presented here we assume the thermally averaged cross-sections

are constant, with constant values of g∗ and g∗s throughout the production process. We also

consider both the DM particle χ and the Z particle to be fermions, with only one degree of

freedom each, for all the cases considered (with the exception of the Conversion-Driven Freeze-Out

mechanism, in Sec. 4 4.3, where we take gZ = 2).

4.1. Freeze-Out

The simplest model to be considered consists of self-annihilating Dark Matter particles χ without

any other relevant interactions or additional BSM (Beyond the Standard Model) particles. In this

case:

⟨σv⟩χZ = ΓZ = ΓZ→χ = ⟨σv⟩χχ→ZZ = ⟨σv⟩ZZ = 0 , (67)

thus the general Boltzmann Equation, Eq. 64, becomes simply:

dYχ
dx

= − 1

3H

∣∣∣∣ dsdx
∣∣∣∣ ⟨σv⟩χχ(Y 2

χ − Y
2
χ) (68)

In addition we consider that, for T ≫ mχ, Dark Matter is in thermal equilibrium with the

thermal bath, and therefore its yield follows the equilibrium distribution. For such temperatures

DM is relativistic and its self-annihilation cross-section is compensated by the inverse reaction

SM + SM → χ + χ [19, 27, 33–38]. A numerical resolution of Eq. 68 is shown in Fig. 5, where

it was employed a model with mχ = 700 GeV, ⟨σv⟩χχ = σvχχ = 10−12 GeV−2 and the number of

degrees of freedom for DM taken as gχ = 1.

In the freeze-out mechanism, Dark Matter is in thermal equilibrium in early times. In this

phase, Dark Matter is relativistic and its yield tracks the equilibrium yield due to the reactions

χ + χ ↔ SM + SM . As the Universe expands, the temperature decreases and all particles in

thermal equilibrium (which we take into account to be Dark Matter and the Standard Model

particles) lose kinetic energy. However, for the interaction SM + SM → χ + χ to occur, it is

necessary that the Standard Model particles have, at least, 2mχ of energy. Hence, the Universe

expansion will suppress the production rate, since the Standard Model particles do not have enough

energy to produce DM. On the other hand, since we assume mχ ≫ mSM , Dark Matter always

has enough energy to annihilate into Standard Model particles and the decrease in temperature
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FIG. 5: Dark matter yield (blue) and its equilibrium yield (black), employing a model with

mχ = 700 GeV, ⟨σv⟩χχ = σvχχ = 10−12 GeV−2 and gχ = 1.

does not suppress the reaction χ + χ → SM + SM . The difference between the self-annihilation

and production of Dark Matter rates results in a decline in Yχ as x increases (i.e. as temperature

declines). This is shown in Fig.5 by the decrease in yield for x ≳ 1. Note, however, that until

x ≃ 20, DM still is in thermal equilibrium. The energy suppression of the thermal yield is called

Boltzmann suppression and follows an exponential distribution, as seen in Eq.44. Finally, at x ≃ 20,

the DM density is so small that the self-annihilation stops. This results in a constant yield for χ,

that has now frozen out. The freeze-out temperature is approximately given by the temperature

when the particle reaction rate is smaller than the Hubble rate H (i.e. Universe expansion is

separating particles faster than they can react):

H(x) ≃
∣∣∣∣ dsdx

∣∣∣∣ ⟨σv⟩χχ → xf =
mχ

Tf
(69)

It is also possible to obtain an approximate analytical solution to Eq. 68. Since we assume a

radiation dominated Universe, the approximation in Eq. 51 is valid for this process:

H =

√
8π3G

90
g∗(T )

(mχ

x

)2
(70)
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Using the above result, along with the ds/dx derivative in Eq. 66, we can integrate Eq. 68:∫ ∞

x0

1

Y 2
χ

dYχ
dx

dx =

∫ ∞

x0

− 1

3H

∣∣∣∣ dsdx
∣∣∣∣ ⟨σv⟩χχ(1− Y

2
χ

Y 2
χ

)dx

= −
∫ ∞

x0

√
90x2

3
√
8π3Gg∗(x)m2

χ

6π2

45
g∗s(x)

m3
χ

x4
⟨σv⟩χχ(1−

Y
2
χ

Y 2
χ

)dx

= −
√

π

45G
mχ⟨σv⟩χχ

∫ ∞

x0

g∗s(x)√
g∗(x)

1

x2
(1−

Y
2
χ

Y 2
χ

)dx (71)

From the above result we see that, while Yχ ≃ Ȳχ, the contribution to the integral is negligible,

since the right hand side is zero. Therefore we can take x0 = xf > 1, where xf is the point

where DM starts to freeze-out (e.g. xf ≃ 20 in Fig.5). As x increases above xf , Y χ decreases

exponentially, as shown in Eq. 44. Hence, if xf ≫ 1, we can assume Y χ ≃ 0 for all the integration

range. Since the integrand is maximum around x ≃ xf , we can assume most of the contribution to

the integral takes place around x = xf . Thus we can assume g(x) ≃ g(xf ) and g∗s(x) ≃ g∗s(xf ).

Under these approximations:∫ ∞

xf

1

Y 2
χ

dYχ
dx

dx = −
√

π

45G

g∗s(xf )√
g∗(xf )

mχ⟨σv⟩χχ
∫ ∞

xf

1

x2
dx (72)

Finally, integrating between xf and ∞:∫ ∞

xf

1

Y 2
χ

dYχ
dx

=
1

Y∞
− 1

Yf
≈ −

√
π

45G

g∗s(xf )√
g∗(xf )

mχ⟨σv⟩χχ
∫ ∞

xf

1

x2
dx =

√
π

45Gg∗(xf )

g∗s(xf )mχ

xf
⟨σv⟩χχ

(73)

and since Y∞ is much smaller than Yf , as we can see in Fig. 5, we obtain:

Y∞ ≈
√

45Gg∗(xf )

π

xf
g∗s(xf )mχ⟨σv⟩χχ

(74)

Applying this result for the model shown in Fig. 5, we obtain Y∞ ≈ 7.52× 10−10, whereas the

numerical result is Yχ = 7.25× 10−10, which shows a good agreement between both methods. The

difference between both results is caused by the assumption that Y χ can be neglected in the whole

interval of integration. In reality, Y χ is not excessively smaller than Yχ around x = xf , which

yields a 3% error in the analytical solution.

It is also interesting to investigate how the final yield is affected by different choices of model

parameters. According to Eq. 74, we can conclude that increasing the cross section ⟨σv⟩χχ will

reduce the final yield of Dark Matter, as can be seen in Fig. 6. Physically, increasing the cross

section means that the particle will interact with a higher reaction rate. In the case of freeze-out,

the interactions are annihilating Dark Matter, hence an increase in the cross section will result in
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a smaller final yield. It is also interesting to notice that the different values of cross section lead

to different values of xf , the value of x when the freeze-out process begins. This is expected, since

larger cross-sections will delay the freeze-out and therefore increase the value of xf .

FIG. 6: Dark matter yield for different values of self-annihilation cross section. The other

parameters are the same used in Fig.5.

Changing the value of the DM mass will also impact its final yield, as seen in Fig. 7. With

a higher mass, Standard Model particles will need more energy to produce Dark Matter through

SM +SM → χ+χ, which makes this reaction less likely. This reduction in the production of DM

through SM + SM → χ + χ rate leads Yχ to decrease faster, which can be seen numerically by

noticing the effect of the mass in its non-relativistic equilibrium expectancy (Eq. 44). Therefore,

when the Universe expansion separates DM particles and causes them to stop reacting, there will

be less particles, thus a lower final yield.

Note that, in Fig. 7, we have changed our horizontal axis to 700GeV/T , since we have assumed

different mass values.

In order to compare the values obtained to the Dark Matter energy density measured exper-

imentally, we can compute the DM relic density using the final yield value. According to the

ΛCDM Model, Dark Matter must have low velocities today, therefore we can approach that its
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FIG. 7: Dark matter yield for different mass values, in a freeze-out model. The other parameters

are the same used in Fig.5.

total energy is well approached by its rest energy:

ρχ(t) = nχ(t)mχ = Y∞s(t0)mχ

⇒ Ωχh
2 =

ρχ
ρc

=
s(t0)mχ

ρc
Y∞ (75)

where ρc = 4.79 × 10−6 GeV cm−3 is the critical density and s(t0) = 2891.2 cm−3 is the entropy

density today [1]. Using our approximation for Y∞ in Eq. 74 we obtain:

Ωχh
2 =

ρχ
ρc

=
smχ

ρc

√
45Gg∗(xf )

π

xf
g∗s(xf )mχ⟨σv⟩χχ

≃ 1.871× 10−11 xf
⟨σv⟩χχ

(76)

If we compare the above result with recent observations of the DM relic abundance[1] (Ωobs
χ h2 =

0.12) and assuming xf ≃ 20, we have:

⟨σv⟩χχ ≈ 3.12× 10−9GeV−2 (77)

This result is known as the ’WIMPMiracle’, since the cross section value is similar to electroweak

cross sections, which has been interpreted as a hint that WIMPs (Weakly-Interacting Massive

Particles), generated through freeze-out, are a good Dark Matter candidate. Also, many models

provide candidates with cross sections in this range [39].



26

The freeze-out mechanism is also attractive because, as Dark Matter is in thermal equilibrium

in early times, the process and the final yield do not depend on external factors prior to the freeze-

out, as inflation and reheating processes. It also guarantees that Dark Matter will be sufficiently

cold to allow for cosmological structure formation [40].

Since this discovery in the 1990s, many types of detectors have been built to search for Dark

Matter, using different strategies of detection. Some examples of detectors are DAMA/LIBRA II,

COSSINE-100, XENON100, LUX, PICASSO, among others. However, until the present moment,

there have not been any evidences found for WIMP Dark Matter from these detectors [41].

4.2. WIMPs with co-annihilation

A different type of freeze-out can take place when we add a second particle species (Z), which

can co-annihilate with Dark Matter (χ) through the process χ + Z → SM + SM . This model

considers Z to be almost degenerate in mass with DM, mZ ≳ mχ [42–48]. In this mechanism

we also assume that Z and χ have large self-annihilation cross-sections. If the mass difference,

∆m ≡ (mZ −mχ), is much larger than the DM freeze-out temperature (Tf ), co-annihilation will

not influence the Dark Matter freeze-out. If mZ ≫ mχ, particle Z will freeze-out much earlier

than DM, and the co-annihilated χ particles will be restored by the process SM + SM → χ+ χ,

which is still occurring efficiently during Z freeze-out. Hence, when DM falls out of equilibrium,

there is very few Z particles for it to react with.

The main reactions for the co-annihilation mechanism are χ+χ ↔ SM +SM (self-annihilation

of Dark Matter), Z+Z ↔ SM+SM (self-annihilation of Z), χ+Z ↔ SM+SM (co-annihilation),

Z ↔ χ + SM + SM (three body decay of Z) and Z + SM ↔ χ + SM (conversion). The three

body decay of Z and the conversion reactions are available interactions in this model because they

are closely related to the co-annihilation process, as can be seen in Fig. 4. Nonetheless, the decay

process Z ↔ χ + SM + SM will be suppressed due to the small mass difference ∆m, and the

conversion reaction will be suppressed when Yχ ≃ YZ .

Under the previous assumptions, this model corresponds to:

⟨σv⟩χχ ≃ ⟨σv⟩ZZ ≫ ⟨σv⟩χχ→ZZ , and mχ ≃ mZ (78)
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turning Boltzmann Equation into:

dYχ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩χχ(Y 2

χ − Y
2
χ)− ⟨σv⟩χZ(YχYZ − Y χY Z)

+
K1(mZ/T )

K2(mZ/T )

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)
+

ΓZ→χ

s

(
YZ − Y Z

Yχ

Y χ

)]
,

(79)

dYZ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩ZZ(Y

2
Z − Y

2
Z)− ⟨σv⟩χZ(YχYZ − Y χY Z)

−K1(mZ/T )

K2(mZ/T )

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)
−

ΓZ→χ

s

(
YZ − Y Z

Yχ

Y χ

)] (80)

Choosing a model with mχ = 700 GeV, mZ = 710 GeV, ⟨σv⟩χχ = 10−16GeV−2, ⟨σv⟩χZ =

10−15GeV−2, ⟨σv⟩ZZ = 10−15GeV−2, ΓZ = 10−16 GeV, ΓZ→χ = 10−15 GeV, and gχ = gZ = 1, we

obtain the results shown in Fig. 8. In this figure, we consider a model without co-annihilation (i.e.

⟨σv⟩χZ = ΓZ→χ = 0), for comparison. To account for a better comparison, we consider that, in

the model without co-annihilation, there is a two body decay of Z (Z → χ+ SM), with the same

decay width as the three body decay in the model with co-annihilation. Thus, Z will decay in both

models, with the same reaction rate. In Eq. A14, we note that adding a new SM particle to the

Feynman diagram of the decay will not alter the expression in the Boltzmann Equation, once SM

particles are in thermal equilibrium, which implies nSM/nSM = 1.

In this mechanism, both particles are in thermal equilibrium at early times. As the Universe

expands, its temperature declines, causing all particles in the thermal bath (which we consider to

be the Standard Model particles, DM and Z) to lose kinetic energy. Hence, the SM particles do not

have enough energy to interact as SM+SM → χ+χ, SM+SM → Z+Z, and SM+SM → χ+Z,

once we assumed mZ ≳ mχ ≫ mSM . Thus, these reactions rates will be suppressed. On the other

hand, χ and Z always have enough energy to react, due to their mass difference with the SM

particles, and therefore the self-annihilation reactions and the co-annihilation reaction continue to

occur at the same rate. The contrast between DM and Z production and annihilation leads to a

decline in Yχ and YZ (i.e. Yχ and YZ become Boltzmann suppressed), following their equilibrium

values. Due to the small mass gap between Dark Matter and Z, their equilibrium yields are fairly

close, leading to Yχ ≃ YZ before x ≃ 9.

Around x ≃ 9, both Dark Matter and Z begin to decouple from the thermal bath, following a

freeze-out pattern. The difference between their self-annihilation cross sections ⟨σv⟩χχ and ⟨σv⟩ZZ

causes a contrast in their yields, with Yχ > YZ in x ≃ 10. This contrast enhances conversion

reactions χ + SM → Z + SM and inverse decays χ + SM → Z, reducing Yχ. The produced Z

particles create a bump in YZ , around x ≃ 40. In the model without co-annihilation, the bump in
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FIG. 8: Dark matter yield (blue) and particle Z yield (orange), along with their equilibrium

yields, in a co-annihilation model. The dotted lines represent the respective yields if

co-annihilation reaction was neglected (i.e. ⟨σv⟩χZ = ΓZ→χ = 0). The graph used a model with

mχ = 700 GeV, mZ = 710 GeV, ⟨σv⟩χχ = 10−16GeV−2, ⟨σv⟩χZ = 10−15GeV−2,

⟨σv⟩ZZ = 10−15GeV−2, ΓZ = 10−16 GeV, ΓZ→χ = 10−15 GeV, and gχ = gZ = 1.

the Z yield is caused solely by the inverse decays, once the conversion interaction is not available

in this model. Eventually, Z begins to decay in both models, and DM yield is enlarged lightly.

As done in the case of freeze-out, we can find an analytical solution for this model. It is

convenient to define [42]:

∆Z =
mZ −mχ

mχ
(81)

We work with the assumption that [42, 49]:

Yi
YT

≃ Y i

Y T

(82)

where YT ≡ Yχ + YZ , and Y T ≡ Y χ + Y Z .

Using the expressions for the equilibrium yields in the non-relativistic regime (Eq.44), we have:

Y i

Y T

=
(mi/mχ)

3/2 exp(−mi/T )

exp(−mχ/T ) + (mZ/mχ)3/2 exp(−mZ/T )
(83)
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The expression mi/mχ can be rewritten as:

mi

mχ
=

mi −mχ +mχ

mχ
=

mi −mχ

mχ
+ 1 = ∆i + 1 (84)

Hence:

Y i

Y T

=
(1 +∆i)

3/2 exp(−mi/T )

exp(−mχ/T ) + (1 + ∆Z)3/2 exp(−mZ/T )
(85)

Subsequently, multiplying all terms by exp(mχ/T ):

Y i

Y T

=
(1 +∆i)

3/2 exp((−mi +mχ)/T )

1 + (1 + ∆Z)3/2 exp((−mZ +mχ)/T )
(86)

and using

−mi +mχ

T
=

−(mi −mχ)x

mχ
= −∆ix (87)

we obtain

Y i

Y T

=
(1 +∆i)

3/2 exp((−∆ix)

geff
(88)

where:

geff = 1 + (1 + ∆Z)
3/2 exp(−∆Zx) (89)

The analytical solution to Yχ can be further simplified if we consider the differential equation

for the total yield (YT):

dYT
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩χχ(Y 2

χ − Y
2
χ)− 2⟨σv⟩χZ(YχYZ − Y χY Z)− ⟨σv⟩ZZ(Y

2
Z − Y

2
Z)
]

(90)

We can now use Eqs. 82 and 88 to write:

Yχ =
Y χYT

Y T

, YZ =
Y ZYT

Y T

Y χ =
1

geff
Y T , Y Z =

(1 +∆Z)
3/2 exp(−x∆Z)

geff
Y T

(91)

and obtain:

dYT
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣
[
−⟨σv⟩χχ

((
Y χYT

Y T

)2

−
(

Y T

geff

)2
)

−2⟨σv⟩χZ

((
Y χYT

Y T

Y ZYT

Y T

)
−

(
gχY T

geff

(1 + ∆Z)
3/2 exp(−x∆Z)Y T

geff

))

−⟨σv⟩ZZ

(Y ZYT

Y T

)2

−

(
(1 + ∆)3/2 exp(−x∆)Y T

geff

)2


(92)
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Then, using our expression for Y i/Y T from Eq. 88:

dYT
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣
[
−⟨σv⟩χχ

((
1

geff
YT

)2

−
(
1Y T

geff

)2
)

−2⟨σv⟩χZ

((
1

geff

(1 + ∆Z)
3/2 exp(−x∆Z

geff
Y 2
T

)
−

(
1

geff

(1 + ∆Z)
3/2 exp(−x∆Z)

geff
Y

2
T

))

−⟨σv⟩ZZ

((1 + ∆Z)
3/2 exp(−x∆Z)

geff
Y 2
T

)2

−

(
(1 + ∆Z)

3/2 exp(−x∆Z)Y T

geff

)2


(93)

Finally we can rewrite the above result as:

dYT
dx

= − 1

3H

∣∣∣∣ dsdx
∣∣∣∣ ⟨σeffv⟩(Y 2

T − Y
2
T ) (94)

where:

σeff ≡ σχχ
1

g2eff
+ 2σχZ

1

g2eff
(1 + ∆Z)

3/2 exp(−x∆Z) + σZZ
1

g2eff
(1 + ∆Z)

3 exp(−2∆Zx) (95)

The result in Eq. 94 allows us to rewrite the co-annihilation process as a freeze-out process

for the total (Z + χ) yield. Since after Z decays, its yield is converted to DM, the total yield

corresponds to the final DM yield. It is also interesting to notice that, if ∆Z ≫ 1, the last two

terms in Eq.95 are suppressed (remember that x > 1 during freeze-out) and we have the usual

freeze-out mechanism.

Expanding σeff on ∆Z using a Taylor series:

σeff =
1

4
(σχχ + 2σχZ + σZZ) +

(2x− 3)

8
∆Z(σχχ − σZZ) (96)

Which can be substituted in Eq. 94:

dYT
dx

= − 1

3H

∣∣∣∣ dsdx
∣∣∣∣ [14(σχχ + 2σχZ + σZZ) +

(2x− 3)

8
∆Z(σχχ − σZZ)

]
(Y 2

T − Y
2
T ) (97)

We can now directly use the freeze-out result (Eq.72) with ⟨σv⟩χχ replaced by σeff :∫ ∞

xf

1

Y 2
T

dYT
dx

dx = −
√

π

45G

g∗s(xf )√
g∗(xf )

mχ

∫ ∞

xf

σeff
1

x2
dx (98)

Since the maximum of the integrand is at x = xf , we can approach that most of the contribution

to the integral occurs around this point. Therefore, we can use the freeze-out result (Eq. 74) with
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⟨σv⟩χχ substituted by σeff (xf ):

Y∞ ≈
√

45Gg∗(xf )

π

xf
g∗s(xf )mχσeff (xf )

=

√
45Gg∗(xf )

π

xf
g∗s(xf )mχ

[
1

4
(σχχ + 2σχZ + σZZ) +

(2xf − 3)

8
∆Z(σχχ − σZZ)

]−1

= 3.1× 10−20 xf
mχ

[
1

4
(σχχ + 2σχZ + σZZ) +

(2xf − 3)

8
∆Z(σχχ − σZZ)

]−1

(99)

For the model in Fig. 8, the analytical approximation gives Y∞ ≃ 1.04× 10−6, which is pretty

close to the numerical result Y∞ = 1.01 × 10−6. The difference between these numbers can be

attributed to the assumption that all the contribution of σeff occurs at x = xf .

The final Dark matter relic abundance then becomes:

Ωχh
2 = 1.871× 10−11

[
1

4
(σχχ + 2σχZ + σZZ) +

(2xf − 3)

8
∆Z(σχχ − σZZ)

]−1

(100)

As mentioned previously, co-annihilation will not have an effect on Dark Matter behaviour if

∆m ≫ Tf , where Tf is the temperature when DM freezes out. In order to confirm this statement,

we shall compare how altering the value of mZ modifies both yields. In Fig. 9 (left), by increasing

mZ , we note that Yχ becomes larger after DM decouples from the thermal bath, at x ≃ 10,

approaching the model without co-annihilation. Therefore, as ∆m increases, the effect of co-

annihilation on DM yield lessens, confirming our previous assumption. Subsequently to the freeze-

out, DM density is increased due to Z decay. We also note that, for higher values of ∆Z , DM

particles will need more energy to convert as χ + SM → Z + SM , or to react as χ + SM → Z.

Therefore, these reactions are suppressed for higher values of mZ .

On the other hand, we note that increasing mZ causes its yield to be Boltzmann suppressed

sooner, while it remains in thermal equilibrium. It also leads to the decay of Z to occur earlier.

We remark that, for larger values of mZ , the acceleration of the Boltzmann suppression leads to a

smaller value of YZ when it decouples from the thermal bath, at x ≃ 10. Thus, when Z decays, it

produces less DM particles. This is in accordance with the analytical expression obtained in Eq.

99.

Lastly, in Fig. 10, we see show how altering the value of co-annihilation cross section ⟨σv⟩χZ

changes the final yield of both particles. A lower co-annihilation cross section implies that the

co-annihilation reaction will occur less often, therefore diluting less DM particles. Thus, the lower

the co-annihilation cross section, the larger the final yield of DM. The same pattern can be seen

for Z, with a larger cross section leading to a lower yield after decoupling from the thermal bath.
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FIG. 9: Dark matter yield Yχ (left) and particle Z yield YZ (right), in a co-annihilation model,

for different values of mZ . The dotted lines represent the respective yields if co-annihilation

reaction was neglected (i.e. ⟨σv⟩χZ = ΓZ = ΓZ→χ = 0). The model used mχ = 700 GeV,

⟨σv⟩χχ = 10−16GeV−2, ⟨σv⟩χZ = 10−15GeV−2, ⟨σv⟩ZZ = 10−15GeV−2, ΓZ = 10−16 GeV,

ΓZ→χ = 10−15 GeV, and gχ = gZ = 1.

FIG. 10: Dark matter yield Yχ (left) and particle Z yield YZ (right), in a co-annihilation model,

for different values of ⟨σv⟩χZ . The model used mχ = 700 GeV, mZ = 710 GeV,

⟨σv⟩χχ = 10−16GeV−2, ⟨σv⟩ZZ = 10−15GeV−2, ΓZ = 10−16 GeV, ΓZ→χ = 10−15 GeV, and

gχ = gZ = 1.

4.3. Conversion-Driven Freeze-Out

A new mechanism can take place if we consider the Dark Matter coupling to the Standard Model

to be relatively small, leading Dark Matter self-annihilation to be subdominant. In this scenario,

Dark Matter is in thermal equilibrium at early times, and the reaction responsible to dilute its
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yield is χ + SM → Z + SM conversions. In the literature, this is called the Conversion-Driven

Freeze-Out (CDFO), also known as co-scattering [40, 50–54].

In this mechanism, the reactions that take a significant role are Z + Z ↔ SM + SM (self-

annihilation of Z), Z+SM ↔ χ+SM (conversion), χ+χ ↔ SM +SM (self-annihilation of Dark

Matter), and Z ↔ χ+ SM (Z decay). Although the co-annihilation (Z + χ ↔ SM + SM) cross-

section is also large in this model, since it is related to the conversion reaction, the co-annihilation

rate is suppressed with respect to the conversion rate due to the small Z densities, as it will be

shown later. In our work, we consider that the only particle from the dark sector that interacts

with Dark Matter is Z, that is more massive than χ and is also in thermal equilibrium at early

times. The implementation of CDFO assumes the following:

⟨σv⟩ZZ→χχ = 0

⟨σv⟩χχ ≪
ΓZ→χ

s

mZ ≳ mχ ≫ mSM

(101)

As a result, the general Boltzmann Equation is reduced to:

dYχ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩χχ(Y 2

χ − Y
2
χ)− ⟨σv⟩χZ(YχYZ − Y χY Z)

+
K1(x)

K2(x)

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)
+

ΓZ→χ

s

(
YZ − Y Z

Yχ

Y χ

)]
,

(102)

dYZ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩ZZ(Y

2
Z − Y

2
Z)− ⟨σv⟩χZ(YχYZ − Y χY Z)

−K1(x)

K2(x)

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)
−

ΓZ→χ

s

(
YZ − Y Z

Yχ

Y χ

)] (103)

Employing a model with mχ = 500 GeV, mZ = 510 GeV, ⟨σv⟩χχ = 10−40 GeV−2, ΓZ→χ =

10−14 GeV, ΓZ = 10−15 GeV, ⟨σv⟩ZZ = 10−13 GeV−2, gχ = 1 and gZ = 2, we obtain Fig. 11.

As we can see, at early times both particles are in thermal equilibrium. Around x ≃ 1 Dark

Matter starts to decouple from the thermal bath, due to its small self-annihilation cross-section.

In contrast, Z remains in thermal equilibrium even for temperatures below their mass, where its

yield starts to become Boltzmann suppressed. At x ∼ 3, we see that YZ = ȲZ and Yχ ≫ Ȳχ, since

Dark Matter has already decoupled. Note that, while Z is in thermal equilibrium, the conversion

term in Eq. 102 can be written as:

ΓZ→χ

s

(
Y Z − Yχ

Y Z

Y χ

)
=

ΓZ→χ

s
Y Z

(
1− Yχ

Y χ

)
(104)
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FIG. 11: Dark matter yield Yχ (blue) and particle Z yield YZ (orange), along with their

equilibrium yields, for the conversion-driven freeze-out mechanism. The model used mχ = 500

GeV, mZ = 510 GeV, ⟨σv⟩χχ = 10−40GeV−2, ΓZ = 10−15 GeV, ΓZ→χ = 10−14 GeV,

⟨σv⟩ZZ = 10−13GeV−2, gχ = 1 and gZ = 2.

As the Dark Matter yield deviates from its equilibrium, the ratio Yχ/Y χ becomes bigger. This

difference will enhance χ + SM → Z + SM conversions, reducing Yχ. The Z particles produced

in this process will rapidly self-annihilate, keeping the Z density equal to its thermal equilibrium

value.

Once the temperature drops even further, at around x ≃ 10, due to the small Z yield, the self-

annihilation rate (Z+Z → SM+SM) becomes smaller than conversion rate (χ+SM → Z+SM).

The production of Z through χ+SM → Z +SM becomes more significant, and YZ deviates from

its equilibrium value. Finally, at x ≃ 30, the conversion process stops once YZ ≃ Yχ, since Ȳχ ≃ ȲZ .

Also around this temperature Z starts to decay and its density is converted to Dark Matter, which

becomes constant after most of the Z particles have decayed, around x ∼ 300.

As done to the previous cases, we shall compare how the change in parameters of the model will

affect the behaviour of both particles. In Fig. 12, we see a comparison between different mass values

for Z. First we note that the bigger the value of mZ , the faster will be its Boltzmann suppression

while it remains in thermal equilibrium. Also, a larger mass gap between χ and Z requires more

energy for Dark Matter to produce Z through the conversion process χ + SM → Z + SM . As
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a result, the conversion rate is suppressed with respect to the case shown in Fig. 11. A smaller

conversion rate means that fewer Dark Matter particles will be converted to Z, which means larger

values for the final Dark Matter yield, as seen in Fig. 12 (left). In addition, the decoupling of Z

becomes closer to the the usual freeze-out scenario, as shown by the red curve (mZ = 580 GeV) in

Fig. 12 (right).

FIG. 12: Dark matter yield Yχ (left) and particle Z yield YZ (right), along with their equilibrium

yields, for the conversion-driven freeze-out model. The model used mχ = 500 GeV,

⟨σv⟩χχ = 10−40GeV−2, ΓZ = 10−15 GeV,ΓZ→χ = 10−14 GeV, ⟨σv⟩ZZ = 10−13GeV−2, gχ = 1 and

gZ = 2.

In Fig. 13, we show a comparison for different values of the conversion cross section. Diminishing

the conversion cross section will maintain Dark Matter yield constant for a longer period at early

times, because conversions χ + SM → Z + SM , that dilute Dark Matter, will occur more rarely.

Also, the final Dark Matter yield will be larger. On the other hand, if the cross section is large,

it can bring the Dark Matter back to thermal equilibrium, as shown by the blue curve in Fig.

13 (left). The Z yield is also strongly affected by the conversion cross section. In particular, for

the two smaller values of cross section considered, we see a peak on YZ soon after its decoupling

temperature (x ≃ 10). This is caused by the fact that the majority of χ+SM → Z+SM reactions

take place when Z is decoupling or has decoupled, so the Z particles created by the conversion

process no longer self-annihilate, thus enhancing YZ . For larger temperatures Z starts to decay,

reducing its yield. This reaction produces χ particles, but it corresponds to a tiny fraction of the

total Dark Matter yield and does not cause any visible changes in Yχ.
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FIG. 13: Dark matter yield Yχ (left) and particle Z yield YZ (right), along with their equilibrium

yields, for the conversion-driven freeze-out model, for different values of ΓZ→χ. The model used

mχ = 500 GeV, mZ = 510 GeV, ⟨σv⟩χχ = 10−40GeV−2, ΓZ = 10−15 GeV, ⟨σv⟩ZZ = 10−13GeV−2,

gχ = 1 and gZ = 2.

4.4. Freeze-In

A different model for Dark Matter genesis can take place if we consider that Dark Matter may

not be in thermal equilibrium at early times. If the DM coupling to the plasma is very small, it

will never be in thermal equilibrium, and will react very rarely with the Standard Model particles.

Although the DM number density can be close to zero at high temperatures, its yield can be

increased due to interactions of other particles. This is called the freeze-in mechanism.

For our work, we consider two different reactions that produce DM: the decay of Z (Z → χ+SM)

and conversions (Z + SM → χ+ SM). Dark matter production stops when YZ is too low, due to

annihilation through reactions or to Boltzmann suppression, and it can no longer produce DM at

a relevant rate. At this state, Dark Matter yield becomes constant.

1. Freeze-in through decays

Firstly, we shall consider a model where DM production is caused by Z decay. DM self-

annihilation rate is very low, as will be shown later. Thus, the main reactions that take place in

this mechanism are the decay of Z (Z ↔ χ+SM), and self-annihilation of Z (Z+Z ↔ SM+SM).
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[38, 55–57]. The employment of this model assumes:

⟨σv⟩χZ = ΓZ→χ = ⟨σv⟩ZZ→χχ = 0

Yχ ≃ 0, for x ≪ 1
(105)

reducing general Boltzmann Equation to:

dYχ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩χχ(Y 2

χ − Y
2
χ) +

K1(mZ/T )

K2(mZ/T )

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)]
, (106)

dYZ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩ZZ(Y

2
Z − Y

2
Z)−

K1(mZ/T )

K2(mZ/T )

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)]
. (107)

where Kn(x) are the modified Bessel functions of second kind.

In Fig. 14, we notice that the Feynman diagrams for reactions Z ↔ χ + SM and t-channel

χ+χ ↔ SM +SM are closely related, as they can be associated by a diagram rotation. However,

whereas the decay of the particle Z only has one vertex, Dark Matter self-annihilation has two

vertices. For freeze-in, we consider the coupling constant for this vertex λ to be very small. Hence,

χ self-annihilation rate will be proportional to λ2, and be subdominant. DM self-annihilation will

also be subdued due to Yχ being very low throughout the whole process.

χ

χ

χ

SM

SM

SM

Z
Z

1. Z decay (ΓZ) 2.   χ self-annihilation (〈σv〉χχ)

FIG. 14: Feynman diagrams for reactions Z ↔ χ+ SM (left) and t-channel χ+ χ ↔ SM + SM

(right).

Setting a model with mχ = 500 GeV, mZ = 5000 GeV, ⟨σv⟩χχ = 10−35GeV−2, ΓZ = 10−21

GeV, ⟨σv⟩ZZ = 10−5GeV−2, and gχ = gZ = 1, we obtain the results shown in Fig. 15. At early

times, Dark Matter yield is negligible, as is characteristic for the freeze-in mechanism. In this

period, Z is relativistic and its yield is kept constant due to reaction Z+Z ↔ SM+SM occurring

efficiently. As the Universe expands, its energy density declines, and the particles in the thermal

bath (which, in this case, are Z and the Standard Model particles) lose energy. At x ≃ 0.1, the

temperature falls under mZ , causing its yield to be Boltzmann suppressed.
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FIG. 15: Dark matter yield (blue) and particle Z yield (orange), along with their equilibrium

yields (slashed), in a freeze-in model through Z decays. For the graph, we considered a model

with mχ = 500 GeV, mZ = 5000 GeV, ⟨σv⟩χχ = 10−35GeV−2, ΓZ = 10−21 GeV,

⟨σv⟩ZZ = 10−5GeV−2, and gχ = gZ = 1.

While Z is in thermal equilibrium, we can rewrite the decay term in Eq. 106 as:

ΓZ

s

(
Y Z − Yχ

Y Z

Y χ

)
=

ΓZ

s
Y Z

(
1− Yχ

Y χ

)
(108)

Thus, since Yχ/Y χ ≪ 1, this term will cause a fraction of Z density to decay through Z →

χ+ SM , increasing Yχ. Nonetheless, this fraction is too small to cause any visible effect in YZ .

Subsequently, around x ≃ 0.7, YZ is sufficiently small and its decay no longer contributes

significantly to the Dark Matter yield, which reaches a plateau. At this point, χ has frozen-in, and

its yield will remain constant. Particle Z continues to self-annihilate until x ≃ 3, when it begins

to decouple from the thermal bath. When that occurs, Z yield is too low for its decay to alter DM

yield any further.

We can obtain an analytical solution for Eq. 106, in order to obtain an expression for the final

yield of Dark Matter. To facilitate our work, we can rewrite Eq. 106 in function of y [55]:

y =
mZ

T
(109)
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leading to:

dYχ
dy

=
1

3H

∣∣∣∣dsdy
∣∣∣∣ [−⟨σv⟩χχ(Y 2

χ − Y
2
χ) +

K1(y)

K2(y)

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)]
(110)

Dark matter self-annihilation is subdominant in this model, thus we can neglect its effect:

dYχ
dy

=
1

3H

∣∣∣∣dsdy
∣∣∣∣ [K1(y)

K2(y)

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)]
(111)

During the majority of DM production, Yχ/Ȳχ ≪ YZ/ȲZ , hence:

dYχ
dy

≃ 1

3H

∣∣∣∣dsdy
∣∣∣∣ [K1(y)

K2(y)

ΓZ

s
YZ

]
(112)

and Z is in thermal equilibrium in this interval:

dYχ
dy

=
1

3H

∣∣∣∣dsdy
∣∣∣∣ K1(y)

K2(y)

ΓZ

s
Y Z (113)

Integrating between y = 0.1 and y = 10 (i.e. between x = 0.01 and x = 1), where the majority

of DM production occurs: ∫ 10

0.1

dYχ
dy

dy =

∫ 10

0.1

1

3H

∣∣∣∣dsdy
∣∣∣∣ K1(y)

K2(y)

ΓZ

s
Y Zdy (114)

Recovering the approximation for H obtained in Eq. 51, the equilibrium yields in Eq. 42 and

Eq. 37, and using:

ds

dy
=

−6π2g∗s
45

m3
Z

y4
(115)

we rewrite:

Y10 − Y0.1 =

√
45

4π3Gg∗

ΓZ

m2
z

[∫ 2/3

0.1

K1(y)

K2(y)
y
135ζ(3)

8π4g∗s
dy +

∫ 10

2/3
y3K1(y)

45

4π4g∗s
dy

]
(116)

Y0.1 ≃ 0, and, at y = 10, DM yield is already constant:

Y10 = Y∞ =
3.98× 1018
√
g∗g∗s

ΓZ

m2
Z

(117)

For the model shown in Fig. 15, we obtain Y∞ = 1.59× 10−13, which show a great concordance

with the numerical value Y = 1.58× 10−13. This leads to:

Ωχh
2 =

6× 1027mχ√
g∗g∗s

ΓZ

m2
Z

(118)
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FIG. 16: Dark matter yield (left) and particle Z yield (right), with their equilibrium yields, for

different values of ΓZ . The model used mχ = 500 GeV, mZ = 5000 GeV, ⟨σv⟩χχ = 10−35GeV−2,

⟨σv⟩ZZ = 10−5GeV−2, and gχ = gZ = 1

Again, as made previously for the other models, we shall analyse how changes in the main model

parameters alter the final yield of both particles. In Fig 16, we compare the effect of different values

of ΓZ . We see that, by increasing the value of ΓZ , we expand the Z → χ + SM reaction rate,

therefore producing more Dark Matter than in the model portrayed in Fig. 15. The decaying

particles are still too small of a fraction of the total population of Z, and do not cause a significant

effect on YZ for all cases considered. This relation is in accordance with the analytical expression

in Eq. 118, where the final yield of DM is proportional to ΓZ .

Lastly, in Fig. 17, we compare this model for different values of mZ . We note that, by increasing

the value of mZ , we cause the mZ/T ratio to be larger than 1 for higher temperatures, therefore

accelerating the Z yield Boltzmann suppression. This leads YZ to decline sooner, as seen in the

right side of Fig. 17. The lower value of YZ subsequently to x ≃ 0.1 causes a decline in the decay

reaction rate, once we have less Z particles available to react as Z → χ + SM . This impacts the

final stages of Dark Matter production, reducing the rate with which DM particles are created.

Hence, the larger the value of mZ , the lower the final yield of DM, as seen in Fig. 17 (left). This

is expected when we analyse the analytical expression obtained in Eq. 118, where the final yield

of DM is inversely proportional to mZ .

2. Freeze-in through 2 → 2 conversions

In our second model for the freeze-in mechanism, we consider that the DM production occurs

mainly through conversions Z + SM → χ + SM . [38, 57–59]. The conversion reaction is closely
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FIG. 17: Dark matter yield (left) and particle Z yield (right), for different values of mZ . The

model counted with mχ = 500 GeV, ⟨σv⟩χχ = 10−35GeV−2, ΓZ = 10−21 GeV,

⟨σv⟩ZZ = 10−5GeV−2, and gχ = gZ = 1.

related to the three body decay of Z through Z ↔ χ + SM + SM , and to the co-annihilation

reaction χ + Z ↔ SM + SM , as can be seen in Fig. 4. However, due to the small value of Yχ

throughout the whole process, the co-annihilation reaction will be subdominant. The application

of this mechanism requires:

⟨σv⟩χχ = ⟨σv⟩χχ→ZZ = 0

Yχ ≃ 0, for x ≪ 1
(119)

reducing Boltzmann Equation to:

dYχ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩χZ(YχYZ − Y χY Z)

+
K1(mZ/T )

K2(mZ/T )

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)
+
ΓZ→χ

s

(
YZ − Y Z

Yχ

Y χ

)]
,

(120)

dYZ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩ZZ(Y

2
Z − Y

2
Z)− ⟨σv⟩χZ(YχYZ − Y χY Z)

−K1(mZ/T )

K2(mZ/T )

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)
−
ΓZ→χ

s

(
YZ − Y Z

Yχ

Y χ

)] (121)

Using a model with mχ = 500 GeV, mZ = 5000 GeV, ΓZ→χ = 10−22 GeV, ΓZ = 10−23 GeV,

⟨σv⟩ZZ = 10−5GeV−2, and gχ = gZ = 1, we obtain Fig. 18. We see a pattern very similar to a

freeze-in through decay model (Fig. 15). At high temperatures, Dark Matter yield is negligible,

as assumed for the freeze-in mechanism. Z is relativistic, and its yield is constant due to reaction

Z + Z ↔ SM + SM occurring efficiently. As the Universe expands, its temperature declines,
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FIG. 18: Dark matter yield (blue) and particle Z yield (orange), in a freeze-in through

conversions model. The model used mχ = 500 GeV, mZ = 5000 GeV, ΓZ→χ = 10−22 GeV,

ΓZ = 10−23 GeV, ⟨σv⟩ZZ = 10−5GeV−2, and gχ = gZ = 1.

causing all particles in the thermal bath (in this case, Z and the Standard Model particles) to lose

energy. Thus, subsequently to x ≃ 0.1, Z yield becomes Boltzmann suppressed.

While Z is in thermal equilibrium, the conversion term in Eq. 120 can be written as:

ΓZ→χ

s

(
Y Z − Yχ

Y Z

Y χ

)
=

ΓZ→χ

s
Y Z

(
1− Yχ

Y χ

)
(122)

And the decay term can be rewritten as:

ΓZ

s

(
Y Z − Yχ

Y Z

Y χ

)
=

ΓZ

s
Y Z

(
1− Yχ

Y χ

)
(123)

At early times, Yχ ≃ 0, which will enhance Z+SM → χ+SM conversions, and cause a fraction

of Z to decay through Z → χ+ SM + SM . Both these processes will increase Yχ, as seen in Fig.

18.

As Z yield starts to become Boltzmann suppressed, the conversion rate begins to decrease. At

x ≃ 0.7, the conversion rate is much smaller than for x < 0.1, and Dark Matter yield is large

enough to not feel the effect of Z decay. Subsequently to this point, Yχ is constant, and Dark
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Matter has frozen in. Z continues to self-annihilate until x ≃ 4, when decouples from the thermal

bath.

For an analytical solution of Dark Matter final yield, it is favorable to rewrite Eq. 120 in

function of y = mZ/T [58]:

dYχ
dy

=
1

3H

∣∣∣∣dsdy
∣∣∣∣ [−⟨σv⟩χZ(YχYZ − Y χY Z) +

K1(y)

K2(y)

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)
+
ΓZ→χ

s

(
YZ − Y Z

Yχ

Y χ

)]
(124)

We can approach Yχ ≃ 0 for the whole process:

dYχ
dy

=
1

3H

∣∣∣∣dsdy
∣∣∣∣ [K1(y)

K2(y)

ΓZ

s
YZ +

ΓZ→χ

s
YZ

]
(125)

Z is in thermal equilibrium during the production of χ:

dYχ
dy

=
1

3H

∣∣∣∣dsdy
∣∣∣∣ [K1(y)

K2(y)

ΓZ

s
Y Z +

ΓZ→χ

s
Y Z

]
(126)

For the decay term, we can recover the analytical expression obtained for the freeze-in through

decays model, along with the approximations for H and ds/dy (Eq. 51 and Eq. 115):

Y∞ = Y decay
∞ +

√
45

4π3Gg∗

1

m2
Z

∫ 10

0.1
yΓZ→χY Zdy (127)

Y∞ = Y decay
∞ +

√
45

4π3Gg∗

ΓZ→χ

m2
Z

[∫ 2/3

0.1
y
135ζ(3)

8π4g∗s
dy +

∫ 10

2/3
y3K2(y)

45

4π4g∗s
dy

]
(128)

Leading to:

Y∞ =
1

√
g∗g∗s

1

m2
Z

(3.98× 1018ΓZ + 6.757× 1018ΓZ→χ) (129)

For the model used in Fig. 18, we obtain Y∞ = 2.86× 10−14, which is in great agreement with

the numerical value 2.88× 10−14. Dark matter abundance becomes:

Ωh2 =
mχ√
g∗g∗s

1

m2
Z

(6× 1027ΓZ + 4.0869× 1027ΓZ→χ) (130)
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As made previously for the other mechanisms, we shall compare how changes in the main

parameters of the model (ΓZ→χ and mZ) impact the behaviour of both particles.

In Fig. 19, we remark that, the higher the value of ΓZ→χ, the larger will the conversion

Z+SM → χ+SM rate be, thus producing more Dark Matter. The assumption that ΓZ is always

10% of ΓZ→χ also implies that, as ΓZ→χ increases, so will ΓZ . A larger value of ΓZ will increase the

fraction of Z decaying, also generating more Dark Matter. These factors, combined, increase the

final yield of χ, as seen in Fig. 19 (left). However, for all cases considered, the Z self-annihilation

rate is too strong for the majority of the process, therefore YZ does not suffer significantly the

alterations of conversion and decay rates, as seen in Fig. 19 (right).

FIG. 19: Dark matter yield (left) and particle Z yield (right), for different values of ΓZ→χ, in a

freeze-in through conversions model. The model used mχ = 500 GeV, mZ = 5000 GeV,

⟨σv⟩ZZ = 10−5GeV−2, ΓZ = 10%ΓZ→χ, and gχ = gZ = 1.

In Fig. 20 (right), we note that a larger value of mZ will accelerate its Boltzmann suppression,

once the mZ/T ratio will become larger than 1 for higher temperatures. This causes the Z yield

to decline sooner. A reduced the value of YZ will lead to a decline in the production of Dark

Matter (i.e. the conversion rate will be suppressed), once we have less Z particles to react as

Z + SM → χ+ SM . This is noticeable in the left side of Fig. 20, where the Dark Matter yield is

lower for larger values of mZ subsequently to x ≃ 0.1.

5. CONCLUSIONS

In this work, different possible mechanisms for Dark Matter genesis were addressed and anal-

ysed. Using a computational program, it was possible to integrate the Boltzmann Equation for

both Dark Matter and Z, a generic particle beyond the Standard Model. This integration ensue
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FIG. 20: Dark matter yield (left) and particle Z yield (right), for different values of mZ , in a

freeze-in through conversions model. The model used mχ = 500 GeV, ΓZ→χ = 10−22 GeV,

ΓZ = 10−23 GeV, ⟨σv⟩ZZ = 10−5GeV−2, and gχ = gZ = 1..

the yield of both particles at all temperatures of interest. These results specify both particles

behaviour as temperature drops, allowing us a better understanding of how these models work,

and how they are affected by changes in particles’ mass and interaction cross section. It also pro-

pitiate a deeper comprehension about how each model and their main parameters impact the Dark

Matter abundance, and which one of them can proportionate the actual DM abundance seen in

our Universe, Ωh2 = 0.12.

The software developed for this work is able to simulate intermediary models, which allow for

construction of new mechanisms in addition to the ones considered here.

It also opens windows for improvement of the code, such as considering multi-component Dark

Matter, using Quantum Field Theory for calculating the cross sections for each reaction.
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Appendix A: Derivation of the Boltzmann Equation for DM

The evolution of a particle i’s number distribution is described through Boltzmann Equation

[31]:

∂Fi(p, t)

∂t
−Hp

∂Fi(p, t)

∂p
= Ci(Fi, Fj , p) (A1)

where we have assumed Universe isotropy. Fi(p, t) is the number distribution for particle i with

momentum p, H is the Hubble constant, and C is a collision term that represents all the interactions

that particle i suffers. This term depends on the number distribution of particle j, that interacts

with particle i. With Fi(p, t), we can write:

ni(t) =

∫
Fi(p, t)p

2 dp

2π2
(A2)

where ni(t) represents particle i’s number density, that changes with time. Using this expression,

we can rewrite Boltzmann Equation as:

dni

dt
+ 3Hni =

∫
Cip

2 dp

2π2
(A3)

The collision term for particle i is given by:

Ci = Cannihilation + Cproduction + Cdecay (A4)

where the contributions for this expression come from the different processes particle i can par-

ticipate in. We must derive each of these expressions separately. We begin by considering an

annihilation between 4 particles i, j, a, b, none of which we consider initially to be in thermal equi-

librium. Taking form as i+ j ↔ a+ b, the collision term for this reaction is given by:∫
Cannp

2 dp

2π2
=

∫
d3pi

2Ei(2π)3
d3pj

2Ej(2π)3
d3pa

2Ea(2π)3
d3pb

2Eb(2π)3
(2π)4δ4(pi + pj − pa − pb)

|M|2[(1± fa)(1± fb)fifj − fafb(1± fi)(1± fj)]

(A5)

where M represents the amplitude matrix, and the δ term enforces momentum conservation. The

+ signs are for bosons, and the − signs are for fermions. Assuming that fa, fb, fi, fj ≪ 1:∫
Cannp

2 dp

2π2
=

∫
d3pi

2Ei(2π)3
d3pj

2Ej(2π)3
d3pa

2Ea(2π)3
d3pb

2Eb(2π)3
(2π)4δ4(pi+pj−pa−pb)|M |2[fifj−fafb]

(A6)

Using Fermi-Dirac or Bose-Einstein statistics, it is possible to rewrite the distributions as:

fi =
1

exp((Ei − µi)/kBT )± 1
(A7)
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where + stands for fermions and − stands for bosons, kB is the Boltzmann constant, and µi is

particle i’s chemical potential. Taking natural units for all the quantities used in our work, kB = 1.

Previously, we assumed that fa, fb, fi, fj ≪ 1, hence the ±1 term will have negligible influence.

With this, we rewrite the distribution functions as:

fi = exp(−(Ei − µi)/T ) (A8)

⇒
∫

Cannp
2 dp

2π2
=

∫
d3pi

2Ei(2π)3
d3pj

2Ej(2π)3
d3pa

2Ea(2π)3
d3pb

2Eb(2π)3
(2π)4δ4(pi + pj − pa − pb)|M |2

[exp(−(Ei − µi + Ej − µj)/T )− exp(−(Ea − µa + Eb − µb)/T )]

(A9)

hence, using conservation of energy Ei + Ej = Ea + Eb,:

exp(−(Ei + Ej)/T ) = exp(−(Ea + Eb)/T ) (A10)

we can use exp(−(Ei + Ej)/T ) as a common multiplier:∫
Cannp

2 dp

2π2
= −

∫
d3pi

2Ei(2π)3
d3pj

2Ej(2π)3
d3pa

2Ea(2π)3
d3pb

2Eb(2π)3
(2π)4δ4(pi + pj − pa − pb)|M |2

exp(−(Ei + Ej)/T )[exp((µi + µj)/T )− exp((µa + µb)/T )]

(A11)

Assuming that, for all cases of interest, chemical potential µ is zero for all particles involved in the

process, we can use Maxwell-Boltzmann similarity approximation, that states [60]:

fi =
ni

ni
f i (A12)

for cases when particle i is in kinetic equilibrium with the thermal bath. Hence, using:

fi

f i

= exp(µi/T ) (A13)

→ exp(µi/T ) =
ni

ni
(A14)

which implies:

⇒
∫

Cannp
2 dp

2π2
= −

∫
d3pi

2Ei(2π)3
d3pj

2Ej(2π)3
d3pa

2Ea(2π)3
d3pb

2Eb(2π)3
(2π)4δ4(pi + pj − pa − pb)|M |2

[exp(−(Ei + Ej)/T )]

[
ninj

ninj
− nanb

nanb

]
(A15)

therefore: ∫
Cannp

2 dp

2π2
= −⟨σv⟩

(
ninj

ninj
− nanb

nanb

)
(A16)
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For the special case of self-annihilation i+ i ↔ a+ b, where a and b are in thermal equilibrium, we

obtain: ∫
Cannp

2 dp

2π2
= −⟨σv⟩

(
n2
i

n2
i

− 1

)
= −⟨σv⟩(n2

i − n2
i ) (A17)

For the decay term, we consider a reaction i ↔ a+ b, and that BR(i → a+ b) = 1 (i.e., particle i

always decays in a and b). This yields:

Cdec =
1

Ei

∫
d3pa

2Ea(2π)3
d3pb

2Eb(2π)3
(2π)4δ(pi − pa − pb)|M|2[fi − fafb] (A18)

Applying the same approximations used previously:

Cdec =

(
fi −

nanb

nanb
f i

)
1

Ei

∫
d3pa

2Ea(2π)3
d3pb

2Eb(2π)3
(2π)4δ(pi − pa − pb)|M|2 (A19)

Cdec = BR(i → a+ b)
Γimi

Ei

(
fi −

nanb

nanb
f i

)
(A20)

where Γi represents particle i’s decay width. Therefore:∫
Cdecp

2 dp

2π2
= −

∫
dp

2π2
p2

Γimi

Ei
fi +

∑
i−decays

BR(i → a+ b)

∫
Γimi

Ei

dp

2π2
p2

nanb

nanb
f i (A21)

Assuming that:

1

ni

∫
1

Ei
fip

2 dp

2π2
=

1

ni

∫
1

Ei
f ip

2 dp

2π2
= ⟨ 1

E
⟩ (A22)

we can integrate and find [61]:

mi⟨
1

E
⟩ = ⟨mi

E
⟩ = K1(mi/T )

K2(mi/T )
(A23)

where Kn are the modified Bessel functions of second kind of order n. Hence:

∫
Cdecp

2 dp

2π2
= −K1(mi/T )

K2(mi/T )
Γi

ni − ni

∑
i−decays

BR(i → a+ b)
nanb

nanb

 (A24)

Lastly, we search for an expression for the production of particle i. Considering an interaction

j ↔ i+ b, we initially have:

Cprod =
1

Ei

∫
d3pj

2Ej(2π)3
d3pb

2Eb(2π)3
(2π)4δ(pj − pi − pb)|M|2[fj − fifb] (A25)

Therefore, applying the same approximations used previously:

Cprod =
1

Ei

∫
d3pj

2Ej(2π)3
d3pb

2Eb(2π)3
(2π)4δ(pj − pi − pb)|M|2

[
fj − f j

ninb

ninb

]
(A26)
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which implies:∫
Cprodp

2 dp

2π2
=

∫
d3pj

Ej(2π)3
d3p

2Ei(2π)3
d3pb

2Eb(2π)3
(2π)4δ(pj − pi − pb)|M|2

[
fj − f j

ninb

ninb

]
(A27)

Using again Eq. A23, we obtain:∫
Cprodp

2 dp

2π2
=

K1(mj/T )

K2(mj/T )
Γj

∑
BR(j → . . . )

(
nj − nj

∑ BR(j → i+ b)

BR(j → . . . )

ninb

ninb

)
(A28)

Therefore, we have found all expressions for the collision term, and can now write Boltzmann

Equation for Dark Matter, taking into account all processes it may participate:

dni

dt
+ 3Hni = −⟨σv⟩(n2

i − n2
i )−

K1(mi/T )

K2(mi/T )
Γi

ni − ni

∑
i−decays

BR(i → . . . )
nanb

nanb


+
K1(mj/T )

K2(mj/T )
Γj

∑
BR(j → . . . )

(
nj − nj

∑ BR(j → i+ b)

BR(j → . . . )

ninb

ninb

) (A29)

For our analysis, it is convenient to define to new variables:

x =
mχ

T
(A30)

Yi =
ni

s
(A31)

where s represents entropy density, and mχ is Dark Matter particle’s mass. Quantity Yi is the

yield of particle i. Entropy density decays by a factor a3, due to Universe expansion. By dividing

ni by entropy density, we cancel this factor, hence the yield will not be altered by the change in

Universe volume. Therefore:

dYi
dt

=
d

dt

(ni

s

)
=

dni

dt

1

s
− ni

s2
ds

dt
(A32)

knowing that, due to the adiabatic expansion of Universe, entropy density must vary as:

ds

dt
= −3Hs (A33)

which implies:

dYi
dt

=
dni

dt

1

s
+

3Hni

s
(A34)

Therefore, using Eq. A29, we get that:

dYi
dt

=
1

s

−⟨σv⟩(n2
i − n2

i )−
K1(mi/T )

K2(mi/T )
Γi

ni − ni

∑
i−decays

BR(i → . . . )
nanb

nanb


+
K1(mj/T )

K2(mj/T )
Γj

∑
BR(j → . . . )

(
nj − nj

∑ BR(j → i+ b)

BR(j → . . . )

ninb

ninb

)
− 3Hni

]
+

3Hni

s

(A35)
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the last two terms cancel each other out, consequently:

dYi
dt

=
1

s

−⟨σv⟩(n2
i − n2

i )−
K1(mi/T )

K2(mi/T )
Γi

ni − ni

∑
i−decays

BR(i → . . . )
nanb

nanb


+
K1(mj/T )

K2(mj/T )
Γj

∑
BR(j → . . . )

(
nj − nj

∑ BR(j → i+ b)

BR(j → . . . )

ninb

ninb

)] (A36)

However, we wish to write this equation with a dependency of x, in order to see how Dark Matter

number density changes with temperature, instead of time. To do this, we apply:[
dx

dYi

]−1

=

[
d(mχ/T )

dYi

]−1

=

[
dmχ

dYi

1

T
− dT

dYi

mχ

T 2

]−1

(A37)

Dark Matter particle mass is constant, hence dmχ/dYi = 0.

dYi
dx

= −dYi
dT

T 2

mχ
(A38)

which can be rewritten as:

dYi
dx

= −dYi
dt

dt

dT

T 2

mχ
(A39)

Next, rewriting:

dt

dT
=

dt

ds

ds

dT
=

−1

3Hs

ds

dT
(A40)

and:

T =
mχ

x
(A41)

where mχ is Dark Matter particle’s mass. This implies that:

dYi
dx

=
1

3Hs

mχ

x2
ds

dT

1

s

−⟨σv⟩(n2
i − n2

i )−
K1(mi/T )

K2(mi/T )
Γi

ni − ni

∑
i−decays

BR(i → . . . )
nanb

nanb


+
K1(mj/T )

K2(mj/T )
Γj

∑
BR(j → . . . )

(
nj − nj

∑ BR(j → i+ b)

BR(j → . . . )

ninb

ninb

)]
(A42)

and, transforming ni = Yis and ni = Y is:

dYi
dx

=
1

3H

mχ

x2
ds

dT

−⟨σv⟩(Y 2
i − Y

2
i )−

K1(mi/T )

K2(mi/T )

Γi

s

Yi − Y i

∑
i−decays

BR(i → . . . )
YaYb

Y aY b


+
K1(mj/T )

K2(mj/T )

Γj

s

∑
BR(j → . . . )

(
Yj − Y j

∑ BR(j → i+ b

BR(j → . . . )

YiYb)

Y iY b

)]
(A43)
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For the expression of ds/dT , we can write that, during radiation era (where the majority of can-

didates of Dark Matter were supposedly created), entropy density was given by:

s =
2π2

45
g∗sT

3 (A44)

where g∗s is the number of effective relativistic degrees of freedom associated with entropy, that

can be approximated as g∗s ≃ g∗, allowing us to use the approximation in Eq. 50. Applying this:

ds

dT
=

6π2

45
g∗sT

2 (A45)

ds

dx
=

ds

dT

dT

dx
=

ds

dT

−mχ

x2
(A46)

therefore we can rewrite:

dYi
dx

=
−1

3H

ds

dx

−⟨σv⟩(Y 2
i − Y

2
i )−

K1(mi/T )

K2(mi/T )

Γi

s

Yi − Y i

∑
i−decays

BR(i → . . . )
YaYb

Y aY b


+
K1(mj/T )

K2(mj/T )

Γj

s

∑
BR(j → . . . )

(
Yj − Y j

∑ BR(j → i+ b)

BR(j → . . . )

YiYb

Y iY b

)] (A47)

For the case of a reaction a+ b → c+ d, where b and d are in thermal equilibrium, we write:

⟨σv⟩a→c

(
Ya

Y a

− Yc

Y c

)
=

Γa→c

s
Y a

(
Ya

Y a

− Yc

Y c

)
=

Γa→c

s

(
Ya − Y a

Yc

Y c

)
(A48)

Consequently, we can arrange these equations to solve for all possible interactions of Dark

Matter particle χ with a particle Z beyond the Standard Model:

dYχ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩χχ(Y 2

χ − Y
2
χ)− ⟨σv⟩χZ(YχYZ − Y χY Z) +

K1(mZ/T )

K2(mZ/T )

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)
+
ΓZ→χ

s

(
YZ − Y Z

Yχ

Y χ

)
+ ⟨σv⟩ZZ→χχ

(
Y 2
Z

Y
2
Z

−
Y 2
χ

Y
2
χ

)]
(A49)

The first term accounts for self-destruction of Dark Matter, in χ+ χ ↔ SM + SM ; the second

term represents co-annihilation between χ and Z, in χ + Z ↔ SM + SM ; the third expression

constitute for the decay of Z in χ, as in Z ↔ χ+SM ; the fourth term act for collisions between Z

with particles from the Standard Model, generating χ, as in Z + SM ↔ χ+ SM ; lastly, the fifth

expression amount to the double collision of Z, for Z + Z ↔ χ+ χ.
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In Eq. 64, the yield of particle Z is used consistently. Hence, we need to write an equation that

represents the variation of YZ , to be able to solve this equation. Using the expressions obtained

before, we arrive at:

dYZ
dx

=
1

3H

∣∣∣∣ dsdx
∣∣∣∣ [−⟨σv⟩ZZ(Y

2
Z − Y

2
Z)− ⟨σv⟩χZ(YχYZ − Y χY Z)−

K1(mZ/T )

K2(mZ/T )

ΓZ

s

(
YZ − Yχ

Y Z

Y χ

)
−
ΓZ→χ

s

(
YZ − Y Z

Yχ

Y χ

)
− ⟨σv⟩ZZ→χχ

(
Y 2
Z

Y
2
Z

−
Y 2
χ

Y
2
χ

)]
(A50)

where the physical significance of each term is the same as explained for Eq. 64; except for the

first term, that in this case accounts for the self-annihilation of Z.
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