Eletromagnetismo I – 2020.QS

Plano de Ensino - Prof. André Lessa

Plataforma e ferramentas utilizadas

A plataforma Moodle será utilizada para a disponibilização de informações sobre o curso, comunicação com os alunos e entrega de atividades. As interações síncronas serão realizadas através da ferramenta *Zoom*.

Formato das Aulas Virtuais

Videoaulas sobre os tópicos de cada semana serão disponibilizadas através da plataforma Moodle. Aulas síncronas com foco em discussões e resolução de problemas serão realizadas no horário reservado à disciplina. Além disso, duas horas de atendimento semanais serão disponibilizadas para o esclarecimento de dúvidas dos alunos.

Critérios Avaliativos

Atividades semanais assíncronas deverão ser realizadas pelos alunos. Tais atividades serão utilizadas como parte dos critérios de avaliação e para a contabilização de presença. As atividades consistirão em problemas sobre os tópicos das aulas, cujas resoluções deverão ser enviadas digitalmente. Duas avaliações assíncronas também serão realizadas nas datas estabelecidas no Cronograma.

A nota final do aluno será determinada por:

$$M = (P1 + P2 + A)/3$$

onde A é a média das atividades semanais. O aluno será reprovado com conceito F se possuir nota inferior a 3 em um ou mais dos itens de avaliação (P1, P2 e A). A nota final **M** será convertida para conceitos segundo a tabela abaixo:

Conceito	Faixa	
A	10,0 a 8,5	
В	8,4 a 7,0 6,9 a 5,5 5,4 a 4,5	
С		
D		
F	4,4 a 0,0	
0	Realização inferior a 75 % das atividades	

Alunos que não realizarem a *P1* ou a *P2* dentro do prazo estipulado e apresentarem justificativa válida poderão realizar a prova substitutiva (SUB) que será contabilizada no lugar da prova perdida para o cálculo de *M*.

Poderão fazer a prova de recuperação (REC) os estudantes que ficarem com conceito final F ou D. A nota final para os alunos que realizarem a prova de recuperação será dada por:

$$M = (REC + (P1 + P2 + A)/3)/2$$

• Cronograma de atividades

O conteúdo abordado durante cada semana e as atividades a serem realizadas seguirão o cronograma abaixo:

Sem ana	Conteúdo	Dia	Atividade
1	Introdução, revisão de álgebra e cálculo vetorial	21/09 (Seg)	
		22/09 (Ter)	Aula Introdutória
		24/09 (Qui)	Aula síncrona
2	Campo Elétrico e Propriedades do Campo Elétrico	28/09 (Seg)	Entrega – Atividade 1
		01/10 (Qui)	Aula síncrona
3	Potencial Elétrico, Trabalho e Energia eletrostática	05/10 (Seg)	Entrega – Atividade 2
		08/10 (Qui)	Aula síncrona
4	Condutores e Equação de Laplace	12/10 (Seg)	Entrega – Atividade 3

12		07/12-09/12	Prova de Recuperação
		03/12 (Qui)	Vista de provas
10		01/12-03/12	Prova Substitutiva
		25/11-27/11	Prova 2
9	Revisão	24/11 (Ter)	Aula síncrona
	Dielétricos	19/11 (Qui)	Aula síncrona
		16/11 (Seg)	Entrega – Atividade 7
8	Expansão de Multipolo Campos Elétricos na Matéria	12/11 (Qui)	Aula síncrona
		09/11 (Seg)	Entrega – Atividade 6
		05/11 (Qui)	Aula síncrona
_	- ~	02/11 (Seg)	Entrega – Atividade 5
6	Separação de Variáveis	29/10 (Qui)	Aula síncrona
5		26/10-28/10	Prova 1
	Método de Imagens e Revisão	22/10 (Qui)	Aula síncrona
_		19/10 (Seg)	Entrega – Atividade 4
		15/10 (Qui)	Aula síncrona

• Ementa:

- Revisão de álgebra vetorial. Análise vetorial: gradiente, divergente, rotacional.
- Lei de Coulomb. Campo elétrico. Potencial eletrostático. Lei de Gauss. Dipolo elétrico.
- Energia eletrostática: densidade de energia do campo eletrostático.
- Equação de Laplace: coordenadas esféricas, coordenadas cilíndricas.

- Imagens eletrostáticas: carga puntual e esfera condutora, cargas lineares e imagens lineares.
- Polarização: campos eletrostáticos em meios dielétricos. Lei de Gauss em meios dielétricos: vetor deslocamento elétrico. Condições de contorno sobre vetores de campo.
- Equação de Laplace em meios dielétricos: campo eletrostático uniforme em esfera dielétrica. Polarizabilidade: equação de Clausius-Mossotti.
- o Dipolos elétricos induzidos.
- Coeficientes de potencial eletrostático. Coeficientes de capacitância.
- o Coeficientes de indução. Capacitores: forcas, torques.

Recomendações:

Fenômenos Eletromagnéticos; Cálculo Vetorial e Tensorial

Bibliografia Básica:

- 1- GRIFFITHS, David J. Introduction to electrodynamics. 3aed. Upper Saddle River, N.J: Prentice Hall, 1999
- 2- LORRAIN, P.; CORSON, D. Electromagnetic fields and waves. San Francisco; W. H. Freeman, 1970.
- 3-VREITZ, John R.; MILFORD, Frederick J.; CHRISTY, Robert W. Fundamentos da teoria eletromagnética

Bibliografia complementar:

Press, 2007

1-FEYNMAN, Richard Phillips; LEIGHTON, Robert B; SANDS, Matthew L. The Feynman lectures on physics: mainly electromagnetism and matter. Reading, Massachusetts: Addison-Wesley Publishing Company, 1964

2-FEYNMAN, Richard Phillips; LEIGHTON, Robert B; SANDS, Matthew L. The Feynman lectures on physics: quantum mechanics. Reading, Massachusetts: Addison-Wesley Publishing Company, 1964

3-FLEISCH, Daniel A. A student's guide to Maxwell's equations. Cambridge, UK: Cambridge University

4-GRANT, I.S.; PHILIPS, W. R. Electromagnetism. 2aed. Chichester: Wiley, 1990

5-MACHADO, Kleber Daum. Teoria do eletromagnetismo. 3aed. Ponta Grossa, PR: UEPG, 2007

6-ZHAO, Shu-ping. Problems and solutions on electromagnetism. Singapore: World Scientif, 2000