CRONOGRAMA DE ATIVIDADES QUÍMICA DE COORDENAÇÃO

1. Descrição das atividades didáticas

- O conteúdo teórico da disciplina será dividido em pequenos vídeos contendo apresentação de slides e áudio (de até 10 minutos). Ao final de cada vídeo será proposto um desafio para os alunos. Os vídeos deverão ser distribuídos via Youtube no modo privado.
- Serão agendadas web conferencias para discutir blocos correlacionados de desafios. Essas conferências serão realizadas via Hangouts ou Google classroom.
- Serão disponibilizadas listas de exercícios sobre os tópicos teóricos através do tidia.
- Serão agendadas web conferências para discutir as listas de exercícios, também via Hangouts ou Google classroom.

2. Processos de avaliação

- As respostas aos desafios deverão ser encaminhadas por cada aluno por e-mail. A entrega destas respostas dará um indício de que os alunos assistiram aos vídeos. Estas atividades contabilizarão na nota final da disciplina (até 10% da nota final).
- Será realizada uma avaliação teórica de maneira remota assíncrona. A nota desta avaliação será somada à nota da avaliação teórica que já foi realizada pelos alunos.
- A avaliação da parte experimental será realizada através da entrega de relatórios dos experimentos realizados durante a reposição presencial.
 Estas notas serão somadas àquelas dos relatórios entregues pelos discentes antes da suspensão das atividades.

3. Frequência

A frequência será contabilizada a partir da entrega dos desafios de cada tema.

4. Mapa de atividades

Aula/ Semana	Unidade	Subunidades	Objetivos específicos	Atividades teóricas	Atividades práticas
Aula 1	Teoria do orbital molecular	 Revisão orbital molecular Orbitais moleculares de sistemas octaédricos Orbitais moleculares de sistemas tetraédricos e quadrado planares Transições eletrônicas de transferência de carga 	Aprender como a teoria do orbital molecular pode ser aplicada à compostos de coordenação.	Assistir vídeos disponibilizado no Tidia	 Envio das respostas à desafios propostos em PDF via e-mail Responder lista de exercícios Participar de videoconferência.
Atividade de laboratório	Susceptibilidade Magnética	Susceptibilidade Magnética	Analisar a susceptibilidade magnética de alguns compostos de coordenação	Texto com resultados obtidos no SQUID pelo docente	 Análise dos resultados e envio de respostas para as questões propostas
Aula 2	Termodinâmica de formação de complexos	 Entalpia de formação de complexos Constante de formação de complexos Efeito quelato Potencial redox dos complexos 	Entender os aspectos termodinâmicos associados à formação de compostos de coordenação	Assistir vídeos disponibilizado no Tidia	 Envio das respostas à desafios propostos em PDF via e-mail Responder lista de exercícios Participar de videoconferência.
Aula 3	Estrutura e reatividade de compostos de coordenação	 Influência do pH sobre a formação de complexos Influência do solvente sobre a formação de complexos Principais classes de ligantes 	Avaliar os parâmetros mais importantes na formação de compostos de coordenação	Assistir vídeos disponibilizado no Tidia	 Envio das respostas à desafios propostos em PDF via e-mail Responder lista de exercícios Participar de videoconferência.
Aula 4	Cinética de formação de compostos de coordenação	 Teoria do estado de transição e cinética de troca de solvente Reações de substituição em complexos Efeito trans Efeitos estéricos, de ligante espectador e de grupo de saída. 	Verificar os parâmetros que afetam a cinética de formação e reatividade de compostos de coordenação.	Assistir vídeos disponibilizado no Tidia	 Envio das respostas à desafios propostos em PDF via e-mail Responder lista de exercícios Participar de videoconferência.
Aula 5	Cinética e transferência eletrônica	 Substituição fotoquímica em complexos Transferência eletrônica Teoria de Marcus Transferência de elétrons fotoinduzida Transferência de energia 	Avaliar os processos de transferência eletrônica em compostos de coordenação	Assistir vídeos disponibilizado no Tidia	 Envio das respostas à desafios propostos em PDF via e-mail Responder lista de exercícios Participar de videoconferência.
Aula 6	Organometálicos e catálise	 Definição de compostos organometálicos Carbonil metálicos Olefinas Catálise 	 Conhecer as diferentes classes de compostos organometálicos Compreender alguns mecanismos gerais de catálise empregando compostos de coordenação 	Assistir vídeos disponibilizado no Tidia	 Envio das respostas à desafios propostos em PDF via e-mail Responder lista de exercícios Participar de videoconferência.
Aula 7	Bioinorgânica	 Química de coordenação biológica Hemoglobina Fotossíntese Outros exemplos de compostos de coordenação em sistemas biológicos 	Empregar os conhecimentos adquiridos ao longo do curso para compreender o funcionamento de compostos de coordenação em diferentes sistemas biológicos.	Assistir vídeos disponibilizado no Tidia	 Envio das respostas à desafios propostos em PDF via e-mail Responder lista de exercícios Participar de videoconferência.

Aula 8	Lista de exercícios	 Termodinâmica de compostos de coordenação Cinética de substituição de compostos de coordenação Cinética e Transferência eletrônica Organometálicos e catálise Bioinorgânica 	Revisar os conteúdos abordados nos vídeos teóricos através de resolução de lista de exercícios	Resolver lista de exercícios e acompanhar discussão sobre as listas	Participação de chat e web conferência para revisão dos exercícios
Aula 9	Revisão	 Teoria da Ligação de valência Teoria do Campo Cristalino/ Ligante Espectros eletrônicos Teoria da Ligação de valência Termodinâmica de compostos de coordenação Cinética de substituição de compostos de coordenação Cinética e Transferência eletrônica Organometálicos e catálise Bioinorgânica 	Revisar o conteúdo que será contemplado na avaliação teórica	Estudo dirigido com objetivo de identificar principais deficiências de aprendizagem	Participação de chat e web- conferência para discutir principais deficiências de aprendizagem
Aula 10	Avaliação teórica	 Teoria da Ligação de valência Teoria do Campo Cristalino/ Ligante Espectros eletrônicos Teoria da Ligação de valência Termodinâmica de compostos de coordenação Cinética de substituição de compostos de coordenação Cinética e Transferência eletrônica Organometálicos e catálise Bioinorgânica 	Realizar avaliação teórica	Realizar avaliação teórica	Realizar avaliação teórica

5. Reposição presencial

Aula/ Semana	Unidade	Subunidades	Objetivos específicos	Atividades teóricas	Atividades práticas
Aula 1 (Prática)/ Semana 1	Aula de laboratório	Espectrometria na região do Uv-vis e infravermelho Reações fotoquímicas	Obter espectros para caracterização de um composto de coordenação e confirmação da sua formação. Verificar os processos fotoquímicos que podem ocorrer com alguns compostos de coordenação		Aula presencial de laboratório com entrega de relatório dirigido
Aula 2 (Prática)/ Semana 2	Aula de laboratório	Cinética de substituição do ligante nos complexos pentacianoferratos Reagentes complexante	Estudar a cinética e o mecanismo de substituição em complexos pentacianoferrato(II). Utilizar espectro UV-Vis para analisar os dados. Ilustrar aspectos da reatividade de compostos de coordenação, e aplicações de reagentes complexantes em spot-tests.		Aula presencial de laboratório com entrega de relatório dirigido
Aula 3 (Prática)/ Semana 3	Aula de laboratório	Discussão de todos os exeperimentos	Revisar e discutir os tópicos abordados na parte prática		Aula presencial de laboratório