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A fundamental analysis of macroscopic system dynamics, starting from the consideration of the
individual movement of each particle, in order to obtain the properties of the fluid as a whole, is
reviewed. Such an approach is known as Kinetic Theory (KT). In this monograph, we consider a
dilute gas and analyze the behavior of the system, firstly, in a less rigorous way, in order to gain
some insight on how to deduce the equations that describe the dynamics. Later on, we make use of
the tools of KT, properly, in order to describe the dynamics without much inconsistencies, thereby
showing that transport equations are closely related to conservation laws. The main goal here is to
deduce the Navier-Stokes equation from elementary principles.

I. INTRODUCTION

In introductory topics on the study of the ther-
modynamics associated to a fluid, one generally analyzes
the behavior of the system in the equilibrium condition.
The same is true for early studies on statistical mecha-
nics. Thermodynamically, the balance characteristics of
macroscopic systems are presented from concepts associ-
ated with internal energy, entropy, number of particles,
pressure, volume, surface tension, polarization, and mag-
netization. All results obtained from macroscopic analy-
sis can be described as consequences of the microscopic
evolution of the system, since one knows that those sys-
tems are composed of particles whose interactions and
dynamics are fundamentally explained from the mechani-
cal theories. The statistical mechanics becomes responsi-
ble for relating both approaches, micro and macroscopic,
starting from the Lagrangian and Hamiltonian formulati-
ons, to obtain the general characteristics in equilibrium.

A configuration is dictated in thermodynamic
equilibrium if it is in mechanical, chemical, and ther-
mal equilibrium. Under those conditions, it is evident
that there will be no tendency for any change of state,
either of the system or of the neighborhood, over time.
That state is interesting because, in particular, any sys-
tem tends to balance if allowed to evolve in a sufficiently
large time. The investigation of problems involving tem-
poral dependence on changes of state is carried out by
other branches of science, such as hydrodynamics and
kinetic theory.

Immediately, it becomes interesting to describe
the system if it is out of balance. Of course, the number
of non-equilibrium states is huge in the state space of a
fluid, most of which are uninteresting due to complexity,
thereby hardly yielding any relevant behavior, in addi-
tion to being fleeting, changing rapidly in general terms.
The situations for which they yield behaviors of interest
are those for which the characteristics in the configura-
tion dynamics remain constant for a long period of time.
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Such behaviors are characteristic for systems that are
close to equilibrium, i.e., ”states of non-equilibrium”will,
from now on, be ”near equilibrium”.

This monograph is organized as follows: In Sec-
tion II, we present a brief description of transport pro-
perties in a simple system with a general analysis of some
concepts that are involved. In Section III, we derive the
transport properties using the kinetic theory (KT) ap-
proach to suppress the inconsistencies that appear in the
previous section. Finally, in Section IV, we show how the
Navier-Stokes (NS) equation is derived from the fluid mo-
mentum conservation properties. The text is based upon
Refs. [1] to [6], as shown at the end of the monograph.

II. COLLISIONS

For collisions, we consider a gas of volume V oc-
cupied by N molecules, and ignore the possible interac-
tions between the particles. We assume that previous
results of statistical mechanics are unknown, except for
the Maxwell-Boltzman (MB) probability distribution for
the velocity of the gas particles.

The probability that a molecule has velocity ~v within
a small volume d3v in the neighbourhood of ~v is

f (~v) d3v =

(
m

2BT

) 3
2

e
− mv2

2kBT d3v. (1)

Considering the particle diameter as d, i.e., its radius
being d/2, we have the particle with an area π (d/2)

2
.

Yet, we have that the effective cross-sectional area is πd2.
If this particle travels a distance l, we can define the mean
free path as the distance traveled by the molecule between
successive collision. We have from V/N = πd2l,

l =
V

πd2N
=

1

nπd2
(2)

where n is the particle density.

Let us now assume that d� l, i. e., the gas is dilute.
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A. Relaxation Time

Relaxation time, or scattering time, is the average
time between successive collisions. Let v̄rel be the average
relative velocity of the gas molecules. The relaxation
time is

τ =
l

v̄rel
. (3)

The average relative speed for two particles with veloci-
ties ~v and ~v′ is

v̄2rel =
〈

(~v − ~v′)2
〉

=

∫
d3~v

∫
d3~v′ (~v − ~v′)2 f (~v) f (~v′)

=
〈
v2
〉

+
〈
v′2
〉
− 2 〈~v · ~v′〉

(4)

where f (~v) is the MB distribution (1), and we have the
distributions f (~v) and f (~v′) because we are assuming
that the velocities are uncorrelated.

In (4), the term 〈~v · ~v′〉 vanishes because the velocity of
each particle is independent and the average velocity in
i-direction vanishes (〈vi〉 = 0), with i = x, y, z. However,
as
〈
v2
〉

=
〈
v′2
〉
, we get v̄2rel = 2

〈
v2
〉
.

From the MB distribution, we get
〈
v2
〉

= 3kBT/m,
and this result is the same as that obtained by using
the equipartition theorem. Therefore, we have, for the
average relative speed and relaxation time, respectively,

v̄2rel =
6kBT

m
; τ =

1

nπd2

√
m

6kBT
. (5)

Another interpretation for the relaxation time comes
from assuming that the probability of collision for a mo-
lecule between times t and t + dt is ωdt, with ω cons-
tant meaning that no memory of the previous collisions
is kept. Let P (t) be the probability that a particle will
reach time t without collision. Then the probability of
reaching time t+ dt without collision is

P (t+ dt) = P (t) (1− ωdt) , (6)

and, in a differential equation form,

dP

dt
= −ωP ⇒ P (t) = ωe−ωt (7)

with
∫∞
0
P (t) = 1. Therefore, the average time between

successive collisions is

∫ ∞
0

tP (t) dt =
1

ω
(8)

that we call the relaxation time τ , and the collision rate
is 1/τ .

B. Basics of Transport

We now turn to the question of how macroscopic
properties evolve in time if the system is out of equi-
librium. Processes for which the particle number, mo-
mentum, or energy change over time are referred to as a
transport. Those quantities normally flow to the equili-
brium state.

1. Diffusion

To describe a simple model that captures the dy-
namics of any particle, somewhat jittery, we will analyze
the random walk and the diffusion equation for which the
system is associated.

For the Random Walk, we can consider a model for
which the particle sits on a one dimensional lattice, the
spacing between the lattice sites being the mean free path
l, and, after the relaxation time τ , the particle jumps to
the left or right with equal probability, 50%. Consider
a particle on the origin, in time t = 0. Our goal is to
calculate the probability that the particle, at time t =
Nτ , sits on x = ml, m an integer. Being P (x, t) that
probability and, by considering m � N, the probability
to get the particle on the sit x = ml is given by the
different ways the particle made 1

2 (N ±m) forward and
backwards jumps, divided by the total number of possible
combinations, 2N . Using Stirling’s approximation to the
factorials, we can write

P (x, t) =
2−NN ![

1
2 (N +m)

]
!
[
1
2 (N −m)

]
!
≈
√

2

πN
e−m

2/2N

(9)
and the probability distribution of the particle is a Gaus-
sian ensemble.

So, if we calculate the mean, variance and the growths
of the root-mean-square distance for the configuration,
we get

〈x〉 = 0 ;
〈
x2
〉

=
l2

τ
t ;

√
〈x2〉 ∼

√
t (10)

which characterizes a random walk behavior. For a gene-
ralization in three dimensions, we can describe this beha-
vior by considering a cubic lattice for which the motion
can proceed along each direction in an independent and
equally probable way. On average, the motion of a parti-
cle along the i-direction will occur only every 3τ . Thus,〈
i2
〉

= l2t/3τ , and the variance,

〈
~x2
〉

=
〈
x2
〉

+
〈
y2
〉

+
〈
z2
〉

=
l2

τ
t (11)

remains unchanged.
Let us turn now to the diffusion equation approach.

In a system out of equilibrium, the particle density, n =
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N/V , is not a constant and we have that the gradient
of n leads to a flow between the regions of high and low
density. In a one dimensional configuration, consider that
the density at some fixed time is n = n (x, t). Then, to
derive an expression for n at the same point, at a later
time t+∆t, we can make use of the fact that any particle
at x, at time t+ ∆t, was situated at some other position
x−∆x, at time t. Here, ∆x is a random variable because
some particles move one way, some the other, and the
density can be written as an average over all different
∆x’s,

n (t+ ∆t, x) = 〈n (t, x−∆x)〉

= n (t, x)− ∂n

∂x
〈∆x〉+

1

2

∂2n

∂x2
〈
∆x2

〉
+ ...

(12)

The fact that 〈∆x〉 = 0 implies the diffusion equation

∂n

∂t
= D

∂2n

∂x2
(13)

where D =
〈
∆x2

〉
/2∆t is the diffusion coefficient.

The derivation above can be extend to three dimensi-
ons by following the same logic. We find

∂n

∂t
= D∇2n (14)

known as Fick’s second law. We expect the diffusion
coefficient D to be related to the mean free path l and
relaxation time τ as D ∼ l2/τ in both cases.

2. Viscosity

Viscosity is a measure of the resistance to fluid
movement. We can describe it as a form of internal fric-
tion, by measuring the drag forces between two plates,
holding the lower plate stationary and taking the upper
plate with a constant speed u. To keep the top plate with
velocity u, we need to apply a force F on it, because the
fluid pushes it back. Close to the top plate, the fluid
travels with the same speed, and, by momentum trans-
port, the fluid close to the bottom plate remains stati-
onary, and that characterizes a velocity gradient in the
z-direction. Experimentally,

F

A
= η

dux
dz

(15)

and the force per unit area exerted in the top plate is
proportional to the velocity gradient. The coefficient of
proportionality η is the viscosity.

To derive the expression (15) from first principles, we
can suppose a slab of gas at some fixed value of z. How

many particles in the fluid, with density n = N/V , pass
through the slab depends on how fast they travel in the
z-direction an that is given by the MB distribution (1),
and the number of particles per unit area, per unit time,
whose speed is in the vicinity of ~v, passing through a
horizontal slab, #, is

# = nvzf (~v) d3v. (16)

To calculate the momentum that each of those molecu-
les imparts to the slab, let us consider the particles that
hit other particles, coming from above the slab. If they
arrive from a position z + ∆z,

∆p = m [ux (z + ∆z)− ux (z)] ≈ mdux
dz

∆z (17)

where ∆z = l cos θ, l is the mean free path, and θ is the
angle at which the particles arrive. Here, θε

[
0.π2
)
.

By identifying ∆p/∆t as the force of the fluid pushing
back and F as the force applied to keep the flow moving,
we can write

F

A
= − 1

A

∆p

∆t
(18)

and by considering (16), we get

F

A
= −n

∫
d3v ∆p vz f (~v)

= −mndux
dz

∫
d3v vz

(
m

2πkBT

)3/2

e−mv
2/2kBT l cos θ

(19)

where we have assumed, at the same time, that the fluid
has an average speed 〈vx〉 = ux, in the x-direction, and
that 〈vx〉 = 0 for the particles speed due to the MB
distribution. If the velocity of the flow u � 〈v〉, the
average velocity of particles in the fluid, then this is not
a bad approximation. For a heuristic derivation, that is
valid. In polar coordinates, we have

F

A
= mn

dux
dz

∫
dv v2

∫ π

0

dθ sin θ

∫ 2π

0

dφ (−v cos θ) l cos θ

×
(

m

2πkBT

)3/2

e−mv
2/2kBT .

(20)

Solving for the angular coordinates, we get

F

A
=
mnl

3

dux
dz

∫
dv4πv3

(
m

2πkBT

)3/2

e−βmv
2/2 (21)

where β = 1/kBT . We can identify the integral
∫
dv as

the expression for 〈v〉, the average speed. Therefore,
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F

A
=

1

3
mnl 〈v〉 dux

dz
. (22)

Comparison with (15), yields the viscosity

η =
1

3
mnl 〈v〉 . (23)

3. Thermal Conductivity

Suppose a fluid between two plates, each at a dif-
ferent temperature. We have a flow of energy in the fluid
that can be represented by a heat flow vector ~q defined
by the energy per unit time passing through an area,
perpendicular to ~q. Experimentally, the heat flow

~q = −κ∇T (24)

is proportional to the temperature gradient, where the
constant of proportionality κ is the thermal conductivity.

Similarly to the construction made for the viscosity,
we will derive that empirical law and find an expression
for κ. By assuming a temperature gradient in the z-
direction, the number of particles that pass through a
slab per unit area per unit time, with velocity ~v, is given
by the equation (16), and, by making use of the equipar-
tition theorem, the average energy is

E (z) =
3

2
kBT (z) (25)

and, by adopting that the energy grows with z, we have

∆E = E (z + ∆z)− E (z) =
3

2
kB

dT

dz
∆z (26)

where ∆z = l cos θ.
Here, as in the case for the viscosity, we have an in-

consistency. The energy deposited or gained by a particle
should depend on the speed of the particle, which is cha-
racterized by the MB distribution, and that did not occur
here.

Now, by computing the heat flow, we have

|~q| = n

∫
d3v ∆E vz f (v) (27)

and, by solving the integrals, as in case for the viscosity,

|~q| = −1

2
kBnl 〈v〉

dT

dz
(28)

that is the law of heat flow, and we can express the ther-
mal conductivity, as usually given in terms of the specific
heat at constant volume cV , as

κ =
1

3
cV l 〈v〉 ; cV =

3

2
nkB . (29)

4. Diffusion and Conservation

Viscosity is about the transport of momentum and
thermal conductivity is about the transport of energy.
Moreover, both, momentum and energy, are conserved.
As the total energy of a system is conserved, we have
that the variation of energy in a region is transported to
its neighborhood, and that is the meaning of heat flow ~q.
We can express

dE

dt
+∇ · ~q = 0 (30)

and, as in 3 dimensions the energy is E (~x) = 3
2kBT (~x),

the continuity equation yields

dT

dt
= − 1

cV
∇ · ~q = − κ

cV
∇2T (31)

which is known as the heat equation and tells us that any
inhomogeneity in temperature is smoothed out through
diffusion with the coefficient D = κ/cV = 1

3 l 〈v〉 ∼ l
2/τ .

For the momentum pi, where i = 1, 2, 3 labels the three
directions in space, we can write the continuity equation
with help of the pressure tensor P ji, which describes the
flux of i-momentum in the j-direction,

dpi

dt
+
∂P ij

∂xj
= 0. (32)

From the derivation of viscosity, we see that the pres-
sure tensor is precisely the force F/A, and from the flux
of x and z momenta, we find

dpx

dt
= mn

dux
dz

= η
d2ux

dz2
(33)

where we have restricted ourselves to situations without
velocity gradients in the x and y directions. The result is
the diffusion equation and the diffusion constant is given
by D = η/mn = 1

3 l 〈v〉 ∼ l
2/τ , once again.

III. KINETIC THEORY

Here, our goal is to derive the transport properties ou-
tlined in the previous section without the inconsistencies
that crept during our previous attempts. For that, we
will use the Boltzmann equation as our main tool and
will allow us to show how irreversibility arises from time-
reversible classical mechanics.

Therefore, the purpose of this section is to lay down the
foundations of kinetic theory (KT), starting from the Ha-
miltonian description of 1023 and ending with the Navier-
Stokes (NS) equation of fluid dynamics.
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A. Liouville Equation and BBGKY Hierarchy

Let us start from the Hamiltonian dynamics for N
identical point particles that, as usual in statistical me-
chanics, is a very huge number, N ∼ O

(
1023

)
. We will

consider the Hamiltonian in the form

H =
1

2m

N∑
i=1

~pi
2 +

N∑
i=1

V (~ri) +
∑
i<j

U (~ri − ~rj) (34)

that contains an external force ~F = −∇V which acts
equally on all particles and we also consider two-body
interactions between particles, represented by the poten-
tial energy U (~ri − ~rj).

The distribution f (~ri, ~pi; t) gives the probability for
the system to be found in the vicinity of the point (~ri, ~pi)
and we will be interested on evaluation of the evolution of
that distribution over the 2N -dimensional phase space.

The function is normalized to

∫
dV f (~ri, ~pi; t) = 1 with dV =

N∏
i=1

d3rid
3pi, (35)

and since the probability is locally conserved, the distri-
bution obeys a continuity equation. Here, we are working
in the phase space, so

∂f

∂t
+

∂

∂~ri
·
(
~̇rif
)

+
∂

∂~pi
·
(
~̇pif
)

= 0 (36)

where ∇ = ∂
∂ ~ri
, ∂
∂ ~pi

, the velocity vector is
(
~̇ri, ~̇pi

)
, and

we are assuming a sum over repeated indexes.
Once Hamilton’s equations are ~̇pi = −∂H/∂~ri and ~̇ri =

∂H/∂~pi, we can write

∂f

∂t
+
∂f

∂~ri
· ∂H
∂~pi
− ∂f

∂~pi
· ∂H
∂~ri

= 0 (37)

known as the Liouville’s equation1. We can write the
Liouville equation using the Poisson bracket

{A,B} ∂A
∂~ri
· ∂B
∂~pi
− ∂A

∂~pi
· ∂B
∂~ri

(38)

and so,

∂f

∂t
= {H, f} . (39)

Note that, for an equilibrium distribution

1 Closely related to so-called Liouville’s theorem

∂f

∂t
= 0 (40)

that is true once {H, f} = 0, and one way to satisfy
that relation is to consider f as a function of H. For the
Boltzmann distribution, f ∼ e−βH and the relation is
satisfied, but this is not the only way, since any function
that Poisson commutes with H also works.

If we have a function A (~ri, ~pi) on phase space, its ex-
pectation value is

〈A〉 =

∫
dV A (~ri, ~pi) f (~ri, ~pi; t) , (41)

whose change with time is given by

d 〈A〉
dt

=

∫
dV A

∂f

∂t

=

∫
dV A

(
∂f

∂~pi

∂H

∂~ri
− ∂f

∂~ri

∂H

∂~pi

)
.

(42)

Integrating by parts and neglecting boundary terms, here
justified because f is normalized, which ensures that f →
0 asymptotically, we obtain, from (42),

∫
dV

(
− ∂A
∂~pi

∂H

∂~ri
+
∂A

∂~ri

∂H

∂~pi

)
f. (43)

Thus,

d 〈A〉
dt

=

∫
dV {A,H} f = 〈{A,H}〉 (44)

and we have an expression for the classical expectation
value, very similar to that for the quantum expectation
value, by using the Poisson bracket.

At this point in our analysis, we have not yet made
a huge advance on the system description, once, even by
considering a probability distribution, we still have a 1023

variables function. For simplicity, we will use the one-
particle distribution function instead of the probability
distribution forN particles. The one particle distribution
function is defined by

f1 (~r, ~p; t) = N

∫ N∏
i=2

d3rid
3pif (~r, ~r2, ..., ~rN , ~p, ~p2, ..., ~pN ; t) .

(45)
Here, we are considering that all N particles are identi-

cal and the above expression does not refer to any specific
particle. By normalizing f1, we get

∫
d3rd3pf1 (~r, ~p; t) = N (46)
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that reflects the idea mentioned above. In many situa-
tions, f1 is the only information that we need from the
system 2.

Our goal now is to derive an equation that governs f1
and, for that, we can, firstly, see how it changes with
time. Thus,

∂f1
∂t

= N

∫ N∏
i=2

d3rid
3pi

∂f

∂t
= N

∫ N∏
i=2

d3rid
3pi {H, f} ,

(47)
and, by using (34), we get

∂f1
∂t

= N

∫ N∏
i=2

d3rid
3pi

− N∑
j=1

~pj
m
· ∂f
∂ ~rj

+

N∑
j=1

∂V

∂ ~rj
· ∂f
∂ ~pj

+

N∑
j=1

∑
k<l

∂U (~rk − ~rl)
∂ ~rj

· ∂f
∂ ~pj

.

(48)
To simplify the expression above, we note that, whene-

ver j = 2, ..., N , we can integrate by parts, and the result
is zero. That is always true because the derivatives with
respect to ~rj move away from f to the other terms, and
the derivatives with respect to ~pj will act on the other
terms, which depend only on ~rj , and vice-versa. Only
the terms involving derivatives with respect to ~r1 ≡ ~r
and ~p1 ≡ ~p do not vanish, which implies

∂f1
∂t

= N

∫ N∏
i=2

d3rid
3pi

[
− ~p

m
· ∂f
∂~r

+
∂V

∂~r
· ∂f
∂~p

+

N∑
k=2

∂U (~r − ~rk)

∂~r
· ∂f
∂~p
,

(49)

and, by defining the one particle Hamiltonian

H1 =
p2

2m
+ V (~r) (50)

we get

∂f1
∂t

= {H1, f1}+N

∫ N∏
i=2

d3rid
3pi

N∑
k=2

∂U (~r − ~rk)

∂~r
· ∂f
∂~p
.

(51)

2 For example, the average density, average velocity, and energy
flux are

n (~r; t) =

∫
d3pf1

~u (~r; t) =

∫
d3p

~p

m
f1

~ε (~r; t) =

∫
dsp

~p

m
E (~p) f1

By analyzing the equation (51), we can see that all
information about the particles interaction is included in
the term U (~r − ~rk), and the variable H1 quantifies the
external force acting on the particle. If we compare this
with the Liouville equation, we can see that the above
equation is a Liouville-like equation with an interaction
term. We can also separate the terms of the equation
in the part that tells how the particles move without
collision and the part that considers the interaction. By
assuming that,

∂f1
∂t

= {H1, f1}+

(
∂f1
∂t

)
coll

(52)

where we identify the first term on the right hand side as
the streaming term and the second one as the collision
integral. Once the particles are identical, each of the

(N − 1) terms in
∑N
k=2 yield the same contribution, and

we write

(
∂f1
∂t

)
coll

= N (N − 1)

∫
d3r2d

3p2
∂U (~r − ~r2)

∂~r
· ∂
∂~p(∫ N∏

i=3

d3rid
3pif (~r, ~r2, ..., ~p, ~p2, ...; t)

)
.

(53)

It is not surprising that the collision integral is not ex-
pressed in terms of the one-particle distribution function,
once it contains no information about any of the other
particles relative to the first one, and the collision term
exactly captures the interactions between them. Howe-
ver, the two-particle distribution function is defined as

f2 (~r, ~r2, ~p, ~p2; t) ≡ N (N − 1)

∫ N∏
i=3

d3rid
3pif (~r, ~r2, ..., ~p, ~p2, ...; t)

(54)
and now the collision integral is written as

(
∂f1
∂t

)
coll

=

∫
d3r2d

3p2
∂U (~r − ~r2)

∂~r
· ∂f2
∂~p

. (55)

The result of the analysis is that if we want to know
how f1 changes with time, we also need to know so-
mething about f2. Making the same previous calcula-
tion, the two-particle distribution function evolves by a
Liouville-like equation, corrected by a term dependent
on the three-particle distribution function. The same is
true for the evolution of f3, and so on. In general, the
n-particle distribution function is

fn (~r, ..., ~rn, ~p, ..., ~pn; t~) =
N !

(N − n)!

×

[∫ N∏
i=n+1

d3rid
3pif (~r, ... ~rN , ~p, ..., ~pN ; t)

] (56)
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and considering that the effective n-body Hamiltonian
includes any interaction between the n particles but ne-
glects interaction with any particle outside this set, in
addition to the external force

Hn =

n∑
i=1

(
~pi

2

2m
+ V (~ri)

)
+
∑
i<j≤n

U (~ri − ~rj) (57)

the n-particle distribution function obeys

∂fn
∂t

= {Hn, fn}+
n∑
i=1

∫
d3rn+1d

3pn+1
∂U (~ri − ~rn+1)

∂~ri
·∂fn+1

∂~pi
.

(58)
The equations (58) are known as the BBGKY hierar-

chy3. The meaning of those equations is that any group
of n particles evolves by obeying the Liouville equation,
that is, in a Hamiltonian way, corrected by interactions
with one of the particle outside that group. The advan-
tage in making use of those set of equations is apparent
when adopting approximations, by truncating the hierar-
chy as the problem allows.

B. The Boltzmann Equation

We can note that there are two time scales in the pro-
blem, the time between collision, known to us as the
relaxation time or scattering time, τ , and the effective
collision time between particles, τcoll. When

τ � τcoll (59)

it is expected that f1 follows its Hamiltonian evolution
with occasional perturbations, and this is the situation
we will consider in what follows. By assuming that re-
gime, the goal is to write down an equation for f1 alone
and this will be the Boltzmann equation.

There are two different ways to proceed. First, we will
guess what form the equation for f1 has to take and,
in a second moment, the derivation will start from the
BBGKY hierarchy.

1. Motivation for the Boltzmann Equation

The most important information that we have about
f1 is its evolution, described by

∂f1
∂t

= {H1, f1}+

(
∂f1
∂t

)
coll

(60)

3 The initials stand for Bogoliubov, Born, Green, Kirkwood, and
Yvon

but we do not have an expression for the collision integral
in terms of f1. From the definition (55), this term carries
the change in the particle momentum due to scattering.
Suppose that one particle sits at (~r, ~p), and collides with
another particle at (~r, ~p2), and, after the collision, these
particles come to possess momenta ~p1

′ and ~p2
′, respec-

tively. The collision integral should reflect the rate at
which those collisions occur and we will define it as

Rate = ω
(
~p, ~p2|~p1′, ~p2′

)
f2 (~r, ~r, ~p, ~p2; t) d3p2d

3p′1d
3p′2,

(61)
where we have introduced the scattering function ω, that
contains the information about the dynamics of the pro-
cess. Here, it is important to note that ω and f2 are
proportional, since the two-particle distribution function
tells us the chance that they sit in (~r, ~p) and (~r, ~p2).

By considering that the potential V varies considera-
bly only in a macroscopic scale of length, we have that
the force acting on the particle does not cause changes
in the total energy and momentum before and after the
collision. So, both are conserved in the process and

~p+ ~p2 = ~p1
′ + ~p2

′ (62)

p2 + p2
2 = p1

′2 + p2
′2. (63)

The above assumptions are true for most external poten-
tials, such as gravity or electric fields.

It is interesting to focus on the distribution of particles
with some specified momentum ~p. Here, two processes
should be considered: collisions that deflect particles in
a state with momentum ~p into a different momentum and
collisions that deflect particles into a the same momen-
tum ~p. This means that the collision integral contain two
terms,

(
∂f1
∂t

)
coll

=

∫
d3p2d

3p1
′d3p2

′ [ω (~p1′, ~p2′|~p, ~p2) f2 (~r, ~r, ~p1′, ~p2′)
− ω

(
~p, ~p2|~p1′, ~p2′

)
f2 (~r, ~r, ~p, ~p2)]

(64)

the first term is responsible for the scattering into the
state with momentum ~p and the second, for the scattering
into a state with a momentum different of ~p.

To complete the deduction, we have to do an analysis
of the scattering function. Firstly, ω does not vanish for
a scattering with energy and momentum conservation. If
we look at the discrete symmetries of spacetime, we can
arrive at some conclusions on that function.

For any scattering, which is invariant under time re-
versal, ~p→ −~p, and we have for the scattering function

ω
(
~p, ~p2|~p1′, ~p2′

)
= ω

(
−~p1′,−~p2′| − ~p,−~p2

)
. (65)
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Under parity, we have (~r, ~p) → (−~r,−~p), and, for in-
variant systems under parity transformations,

ω
(
~p, ~p2|~p1′, ~p2′

)
= ω

(
−~p,−~p2| − ~p1

′,−~p2′
)
. (66)

Putting those two information together,

ω
(
~p, ~p2|~p1′, ~p2′

)
= ω

(
~p1
′, ~p2

′|~p, ~p2
)
, (67)

and this means that the scattering rate is invariant under
exchange of ingoing and outgoing momentum. Here, we
also assume transnational invariance, i.e., the scattering
rate is equivalent at positions +~r and −~r.

Thus, by making use of the symmetry property, the
collision integral takes the form

(
∂f1
∂t

)
coll

=

∫
d3p2d

3p1
′d3p2

′ω
(
~p, ~p2|~p1′, ~p2′

)
×
[
f2
(
~r, ~r, ~p1

′, ~p2
′)− f2 (~r, ~r, ~p, ~p2)

]
,

(68)

and, to finish the derivation, we need to express the col-
lision integral in terms of f1 rather than f2. For that,
we make the assumption 4 that the velocities of the two
particles are uncorrelated, so that

f2 (~r, ~r, ~p, ~p2) = f1 (~r, ~p) f1 (~r, ~p2) . (69)

We can imagine that, during the collision process, the
velocities of the two particles become correlated. There
is, however, a time τ before which one of those particles
experienced a collision. Once two collisions in sequence
typically occurs with a completely different particle, it is
plausible that the velocity of the first particle has nothing
to do with the velocity of the second one. The fact that
velocities are uncorrelated before the collision, but not
after it, introduces an ”arrow of the time”in the process.

Therefore, we can write an equation for the evolution
of f1, (60), with

(
∂f1
∂t

)
coll

=

∫
d3p2d

3p1
′d3p2

′ω
(
~p, ~p2|~p1′, ~p2′

)
×
[
f1
(
~r, ~p1

′) f1 (~r, ~p2′)− f1 (~r, ~p) f1 (~r, ~p2)
]
,

(70)

and this is the Boltzmann equation.

2. Equilibrium and Detailed Balance

Let us consider the system in equilibrium, i.e., the equi-
librium distribution feq. We have that ∂feq/∂t = 0. For

4 Sometimes named as molecular chaos

that condition to be met, we must have {f,H1} = 0,
and this is true for any function that Poisson commutes
with H1. If we restrict ourselves to the case of absence of
an external force, V (r) = 0, any function of momentum
is an equilibrium distribution. For the vanishing of the
collision integral, it is sufficient that

feq1
(
~r, ~p1

′) feq1 (
~r, ~p2

′) = feq1 (~r, ~p) feq1 (~r, ~p2) (71)

known as the detailed balance condition.
By writing that condition as

log(feq
1 (~r, ~p1′))+log(feq

1 (~r, ~p2′))=log(feq
1 (~r,~p))+log(feq

1 (~r, ~p2)),
(72)

we can see that the momenta on the left are those after
the collision, and, on the right, those before the collision,
and this means that the sum of log feq1 must be conser-
ved during the collisions, in order to vanish the collision
integral.

We know that, during the collision process, the conser-
ved quantities are the momentum and energy, as it has
been shown in (62) and (63), respectively. Therefore, we
should take

log (feq1 (~r, ~p)) = β (µ− E (~p) + ~u · ~p) (73)

where µ, β and ~u are constants, with µ being adjusted
from the normalization of f1, and E (~p) = p2/2m. Then,
since ~p = m~v,

feq1 (~r, ~p) =
N

V

(
β

2πm

) 3
2

e−βm(~v−~u)2/2 (74)

which is the MB distribution, provided β be proportio-
nal to the inverse temperature. Here, ~u allows for the
possibility of an overall drift velocity.

Note that if we ignore the streaming term, then there
are a greater number of solutions that satisfy the condi-
tion (71). In that case, µ, β, and ~u are now functions of
space and time, and we get

f local1 (~r, ~p; t) =n (~r, t)

(
β (~r, t)

2πm

)3/2

× exp
(
−β (~r, t)

m

2
[(~v − ~u (~r, t))]

2
)
,

(75)

that do not describe an equilibrium distribution, as a
whole, because the streaming term does not vanish. Dis-
tributions of that kind are said to be in local equilibrium,
with the temperature, drift velocity, and particle density
varying over space.
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C. Hydrodynamics

Hydrodynamics is, in general, the science of fluid flow,
the behavior of a fluid system in local equilibrium and
its evolution. In this section, we are going to analyze
what would be the dynamic quantities that describe a
fluid, why these variables would be relevant for such a
description, and finally derive an equation that describes
their dynamics.

1. Conserved Quantities

We have already pointed out that the dynamical quan-
tities of interest are density ρ (~r, t), temperature T (~r, t),
and velocity ~u (~r, t), and this is due to the fact that these
variables change very slowly in a system. We will see
below that this characteristic is a consequence of the fact
that they are all associated to conserved quantities.

For that, consider, over the single particle phase space,
a general function A (~r, ~p) and define the average of this
function as

〈A (~r, ~p)〉 =

∫
d3pA (~r, ~p) f1 (~r, ~p; t)∫

d3pf1 (~r, ~p; t)
(76)

where we identify in (76) the number density of particles

n (~r, t) =

∫
d3pf1 (~r, ~p; t) . (77)

Note that the result (76) is different from the average in
(41) because, here, we are interested in how things vary
with ~r and t.

Let us analyze how the average of A changes with time
and relate this to the Boltzmann equation. Beforehand,
we can guess that we will have a streaming term and a
collision term and, since we want to study quantities that
vary slowly, the following condition needs to be satisfied:

∫
d3pA (~r, ~p)

(
∂f1
∂t

)
coll

= 0. (78)

Thus, using the collision integral expression (70), we
get

∫
d3p1d

3p2d
3p1
′d3p2

′ω
(
~p1
′, ~p2

′|~p1, ~p2
)

×
[
f1
(
~p1
′) f1 (~p2′)− f1 (~p1) f1 (~p2)

]
×
[
A (~r, ~p1) +A (~r, ~p2)−A

(
~r, ~p1

′)−A (~r, ~p2′)] = 0

(79)

and this is true for any distribution that satisfies

A (~r, ~p1) +A (~r, ~p2) = A
(
~r, ~p1

′)+A
(
~r, ~p2

′) . (80)

Functions that remain constant before an after collisions
are called collisional invariants. Therefore, we get

∫
d3pA (~r, ~p)

(
∂

∂t
+

~p

m
· ∂
∂~r

+ ~F · ∂
∂~p

)
f1 (~r, ~p, t) = 0

(81)

where ~F = −∇V is the external force.
Then, we can rewrite the equation (81) in the form

∂

∂t

∫
d3pAf1 +

∂

∂~r
·
∫
d3p

~p

m
Af1

−
∫
d3p

~p

m
· ∂A
∂~r

f1 −
∫
d3p~F · ∂A

∂~p
f1 = 0

(82)

and, using our previous result for 〈A (~r, t)〉, we have

∂

∂t
〈nA〉+

∂

∂~r
· 〈n~vA〉 − n

〈
~v · ∂A

∂~r

〉
− n

〈
~F · ∂A

∂~p

〉
= 0

(83)
which governs how any collisional invariant evolves.

We already know three collisional invariants, which
are the trivial solution A = 1, the momentum, and the
energy, and we now evaluate each of these cases.

a. Density From the trivial solution, by applying
it to the equation (83), we have, for the particle density,

∂n

∂t
+

∂

∂~r
· (n~u) = 0 (84)

where ~u (~r, t) = 〈~v〉 is the average velocity of the particles.
In the following approache, we will replace the particle
density n (~r, t) by the mass density ρ (~r, t), since ρ (~r, t) =
mn (~r, t).

b. Momentum For the second collisional invariant,
since A = m~v, we obtain, from (83),

∂

∂t
(mnui) +

∂

∂rj
〈mnvjvi〉 − 〈nFi〉 = 0 (85)

where, algebraically developing the middle term, and
using the continuity equation (84), we get [1]

ρ

(
∂

∂t
+ uj

∂

∂rj

)
ui =

ρ

m
Fi −

∂

∂rj
Pij , (86)

obtaining an equation for momentum conservation.
Here, we define the pressure tensor6 Pij = Pji =

ρ 〈(vj − uj) (vi − ui)〉, that is the flux of the i (j)− mo-
mentum in the j (i)− direction. We can, sometimes,
write the equation (86) by using the material derivative,

Dt ≡
∂

∂t
+ uj

∂

∂rj
. (87)

6 This definition for pressure tensor, evaluated for the MB distri-
bution, gives us Pij = nkBTδij .
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c. Kinetic Energy From the third collision inva-
riant, we will work here with A = m (~v − ~u)

2
/2, and

substitute it into the equation (83), to get

1

2

∂

∂t

〈
ρ (~v − ~u)

2
〉

+
1

2

∂

∂ri

〈
ρvi (~v − ~u)

2
〉

−ρ
〈
vi
∂uj
∂ri

(~v − ~u)
2

〉
= 0.

(88)

Using the idea of equipartition, we have

1

2

〈
(~v − ~u (~r, t))

2
〉

=
3

2
mkBT (~r, t) , (89)

which defines the quantity heat flux

qi =
1

2
mρ
〈

(vi − ui) (~v − ~u)
2
〉

(90)

and, with the Pij definition, we can rewrite the equation
(88) as

3

2

∂

∂t
(ρkBT ) +

∂

∂ri

(
qi +

3

2
ρuikBT

)
+mPij

∂uj
∂ri

= 0.

(91)
Note that, since Pij = Pji, we can define the rate of
strain Uij = (∂ui/∂rj + ∂uj/∂ri) /2 to substitute for the
term ∂uj/∂ri. Therefore, we obtain

ρ

(
∂

∂t
+ ui

∂

∂ri

)
kBT +

2

3

∂qi
∂ri

+
2m

3
UijPij = 0. (92)

Then, we have equations to describe how each of the
variables, density (84), velocity (86), and temperature
(92) evolves. Those equations, however, are not closed
and we need to solve the Boltzmann equation, and com-
pute f1 to determine these quantities.

2. Ideal Fluids

To solve Boltzmann equation, we will use some infor-
mation to guess a form for the distribution function, cal-
culate the variables, and finally describe their change in
time.

We are interested in distributions that satisfy
(∂f1/∂t)coll = 0, and this

f
(0)
1 (~r, ~p; t) =n (~r, t)

(
1

2πmkBT (~r, t)

)3/2

exp

(
− m

2kBT (~r, t)
[(~v − ~u (~r, t))]

2

) (93)

does that.

Then, since f
(0)
1 is normalized, we have, from (77) and

(89), that the density and temperature coincide with the
quantities in our previous analysis. By using (93) to com-
pute the pressure tensor and the heat flux, we get

Pij = kBn (~r, t)T (~r, t) δij (94)

~q = 0 (95)

We are now able to express the previous conservation
laws from our guess of the form of the distribution. For
the continuity equation, we have

(
∂

∂t
+ uj

∂

∂rj

)
ρ+ ρ

∂ui
∂ri

= 0 (96)

where ρ = mn. From the equation for momentum con-
servation, we obtain the Euler equation

(
∂

∂t
+ uj

∂

∂rj

)
ui +

1

ρ

∂P

∂ri
=
Fi
m

(97)

The equation for the conservation of energy is now

(
∂

∂t
+ uj

∂

∂rj

)
T +

2T

3

∂ui
∂ri

= 0. (98)

The equations (96), (97), and (98) describe the motion
of an ideal fluid, because they are missing dissipation.

D. Transport with Collision

So far, we have deduced equations that describe the
behavior of the variables of interest, but we suffer from
the loss of information about how the system returns to
the equilibrium state. To quantify that loss of informa-

tion, let us check how f
(0)
1 behaves in relation to the

streaming terms. Using the one particle Hamiltonian,
and the definition of the Poisson bracket, we get

∂f
(0)
1

∂t
−
{
H1, f

(0)
1

}
=
∂f

(0)
1

∂t
+ ~F · ∂f

(0)
1

∂~p
+~v · ∂f

(0)
1

∂~r
. (99)

Calculating the terms on the right-hand side of the equa-
tion above, and by making use of the fact that both r
and t dependences lie in the functions n, T , and ~u , we
have

∂f
(0)
1

∂t
−
{
H1, f

(0)
1

}
=

[
1

n
D̃tn+

(
m (~v − ~u)

2

2kBT 2
− 3

2T

)
D̃tT

+
m

kBT
(~v − ~u) · D̃t~u−

1

kBT
~F · (~v − ~u)]f

(0)
1

(100)
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where D̃t differs from the material derivative Dt, and is
defined by

D̃t ≡
∂

∂t
+ ~v · ∂

∂~r
. (101)

Then, as we know the equations that describe how n
(96), ~u (97), and T (98) change, we can algebraically
manipulate the equation (100), by making use of the de-
finition for Uij and the result P = nkBT , to write

∂f
(0)
1

∂t
−
{
H1, f

(0)
1

}
=

[
1

T

(
m

2kBT
(~v − ~u)

2 − 5

2

)
× (~v − ~u) · ∇T

+
m

kBT

(
(vi − ui) (vj − uj)−

1

3
(~v − ~u) δij

)
Uij ]f

(0)
1

(102)

and the right-hand side is not zero. Note that, if we have
T and ~u varying slowly with the position, we will have
almost a solution. Thus, let us consider a small correction
in the distribution function, so that

f1 = f
(0)
1 + δf1 (103)

and let us see what does change in our analysis.

1. Relaxation Time Approximation

The introduction of the correction term in the distri-
bution clearly changes the form of the collision integral.
Now we have

(
∂f1
∂t

)
coll

=

∫
d3p2d

3p1
′d3p2

′ω
(
~p1
′, ~p2

′|~p1, ~p2
)

[
f
(0)
1

(
~p1
′) δf1 (~p2′)+ δf1

(
~p1
′) f (0)1

(
~p2
′)

− f (0)1 (~p1) δf1 (~p2)− δf1 (~p1) f
(0)
1 (~p2)]

(104)

where we have neglected quadratic terms. However, it is
not easy solve 7, the collision integral in that form, and
we will make use of the relaxation time approximation8

to simplify our description, by defining the operator

(
∂f1
∂t

)
coll

= −δf1
τ

(105)

7 The method involve the Chapman-Enskog expansion.
8 This approximation is also known as the Bathnagar-Gross-Krook

(BGK) approximation.

Although the relaxation time τ could be a function of the
moment, we will here consider it as a constant. There-
fore, we have

∂
(
f
(0)
1 + δf1

)
∂t

−
{
H1,

(
f
(0)
1 + δf1

)}
= −δf1

τ
(106)

and, since δf1 � f
(0)
1 , we can consider that the δf1,

on the left-hand side, vanishes. By making use of the
expression (102), we get the correction

δf1 = −τ
[

1

T

(
m

2kBT
(~v − ~u)

2 − 5

2

)
(~v − ~u) · ∇T

+
m

kBT

(
(vi − ui) (vj − uj)−

1

3
(~v − ~u) δij

)
Uij ]f

(0)
1 .

(107)

Now, let us see how that influences the transport proper-
ties.

2. Thermal Conductivity

Our goal now is to write an expression for the thermal
conductivity κ by making use of the corrected distribu-
tion function (103), and then obtain an equation for the
heat flow, as our (31). From our previous considerati-

ons, we known that the distribution f
(0)
1 implies ~q = 0.

Then, only δf1 contributes to compute the heat flux (90).
Furthermore, the second term in (107) vanishes when we
do the integral, and then we have

~q = −κ∇T (108)

with κ given by

κ =
mτρ

2T

∫
d3p (~v − ~u)

4

[
m

2kBT
(~v − ~u)

2 − 5

2

]
f
(0)
1

=
mτρ

6T

[
m

2kBT

〈
v6
〉
0
− 5

2

〈
v4
〉
0

]
(109)

where the subscript 0 means that the average is to be
taken with u = 0.

Now, by computing9 κ, we get

κ =
5

2
τnk2BT. (110)

9 By solving the integrals, we obtain
〈
v6
〉
0

= 105k3BT
3/m3 and〈

v4
〉
0

= 15k2BT
2/m2.
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From (92), by assuming a static fluid, ~u = 0, without
change in the thermal conductivity, ∂κ/∂~r = 0, we obtain
an equation for the heat flow

ρkB
∂T

∂t
= −2

3
κ∇2T. (111)

3. Viscosity

We now analyze the shear viscosity. We need to com-
pute the flux of the i-momentum in the j-direction, but
this is the definition for the pressure tensor Pij . From our

previous discussion, we have that the distribution f
(0)
1

implies a pressure tensor in the form (94), which means
that the viscosity vanishes, and then only the correction
(107) contributes to the viscosity.

From that correction, we can conclude that only the
second term is important to compute the viscosity. We
write

Pij = Pδij + Πij (112)

where P ≡ kBnT and Πij is the stress tensor

Πij =
mτρ

kBT
Ukl

∫
d3p (vj − uj) (vi − ui)

×
[
(vk − uk) (vl − ul)−

1

3
(~v − ~u)

2
δkl

]
f
(0)
1

=
mτρ

kBT
Ukl

[
〈vivjvkvl〉0 −

1

3
δkl
〈
vivjv

2
〉]
.

(113)

Due to a mathematical property10, from the above ex-
pression, we get the form of Πij ,

Πij = −2η

(
Uij −

1

3
δij∇ · ~u

)
(114)

and if we substitute for the condition ∂ux/∂z, as discus-
sed in the section (II B 2), we have

Πxz = −η ∂ux
∂z

. (115)

Algebraically manipulating the equation (113), and com-
paring it to the equation (114), we obtain the form of
η,

η = nkBτT. (116)

10 Πij is a traceless tensor and depends linearly on the tensor Uij

IV. THE NAVIER-STOKES EQUATION

Finally, by considering the corrected distribution func-
tion, we can write the set of equations that govern the
conservation of density, momentum, and energy. For fluc-
tuations in density, we have

∂ρ

∂t
+∇ · (ρ~u) = 0 (117)

since this does not change. From the equation (86), by
making use of the pressure tensor in the form (112), and
by considering that there is no change in the viscosity,
∇η ≈ 0, we can write, for the momentum conservation,

(
∂

∂t
+ ~u · ∇

)
~u =

~F

m
− 1

ρ
∇P +

η

ρ
∇2~u+

η

3ρ
∇ (∇ · ~u)

(118)
known as the Navier-Stokes (NS) equation. To finish, we
will analyze the change in the equation for the conserva-
tion of energy (92). By assuming that variations in the
thermal conductivity κ and the quantity UijΠij can be
neglected, we get

ρ

(
∂

∂t
+ ~u · ∇

)
T − 2

3
κ∇2T +

2m

3
P∇ · ~u = 0 (119)

and we arrive at the end of our analysis in the dilute gas
approximation.
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