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The Theory of Thermodynamics, which was developed in the 19th century, before the advent of
General Relativity and Quantum Mechanics, plays a central role in the study of the properties of
ordinary macroscopic matter. Black Holes, originally study objects of General Relativity, surpris-
ingly can behave as thermodynamic entities that have temperature and entropy. The geometric
formulation of General Relativity is discussed, along with the comparison between the Mechanical
Laws of Black Holes and the Laws of Thermodynamics. Lastly, are mentioned problems that arise
with the classical approach and how considering quantum e�ects is important to achieve a better
description of black hole states.

I. INTRODUCTION

General Relativity (GR) is one of the most successful
theories in describing the physical world. It describes
gravity as a consequence of the spacetime geometry. The
fact that gravity is attractive explains why stars and
galaxies were formed and became stable, as their equi-
librium is maintained as a result of the balance between
gravity and thermal pressure or rotation and internal mo-
tions. In a situation where the balance can no longer
be sustained, the object begins to shrink. It reaches
a critical size such that the gravitational collapse is in-
evitable. The �gravitational �eld� becomes so strong that
not even light can escape past a region called event hori-
zon. This extreme object is called a black hole, and GR
predicts that it has a singularity lying inside. The Cosmic
Censorship Conjecture ensures that singularities must be
trapped inside black holes, and so they are hidden from
external observers, in a way that the breakdown of pre-
dictability would not a�ect the external spacetime [1].

Furthermore, it has been shown that a collapsing body
loses information, turning into a stationary black hole
that can be described by only a few parameters. One can
derive expressions for a stationary axisymmetric black
hole, and two quantities that appear in the expressions,
the surface gravity κ and the area of the event horizon A,
can be related to the thermodynamic quantities temper-
ature T and entropy S, respectively [2]. The analogies
suggest a correspondence between the Laws of Black Hole
Mechanics and the Laws of Thermodynamics, giving rise
to Black Hole Thermodynamics. In this work are used
units such that c = ~ = 1.

II. PHYSICS IN CURVED SPACETIME

Spacetime is a pair (M, gµν) where M is a 4-
dimensional manifold and gµν is a Lorentzian metric.
The Laws of Physics can be generalized to curved space-
time via the minimal-coupling principle, taking valid laws
in inertial coordinates in �at spacetime and writing them
in a tensorial form [3]. With that purpose, the motion of
a freely-falling particle along a parameterized path xµ(λ)

is given by:

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0, (1)

where Γµρσ is the metric connection and λ is an a�ne
parameter. In GR an unaccelerated test particle will fol-
low a timelike geodesic, the path that maximizes proper
time and obeys (1). It is necessary to describe the energy
and momentum of a system of particles. This is done by
means of the energy-momentum tensor Tµν . The local
conservation law of energy-momentum turns out to be in
curved spacetime:

∇µTµν = 0, (2)

where ∇µ is the covariant derivative. An observer with
four-velocity vµ will measure an energy density Tµνv

µvν ,
and the Weak Energy Condition states that it must be
non-negative [4].

Einstein �eld equation (3) describes how matter is af-
fected by the curvature of spacetime, which manifests
itself as gravity, and how the curvature is a�ected by the
presence of energy and momentum.

Rµν = 8πG

(
Tµν −

1

2
Tgµν

)
(3)

Rµν is the Ricci tensor, gµν the metric of the spacetime
and G Newton's constant of gravitation.

Einstein's equation is a set of six independent second-
order and non-linear partial di�erential equations for the
metric gµν . Although they are usually very di�cult to
solve, there are a few exact solutions in special cases
where the spacetime possesses certain symmetries. Of
fundamental interest is the case in which Tµν = 0, lead-
ing us to the vacuum Einstein's equation:

Rµν = 0. (4)

Within the solutions of such equations are the rotating
black holes.
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III. CONFORMAL DIAGRAMS AND

CAUSALITY

The classical and hyperbolic nature of GR and Ein-
stein's equation guarantees that, given the initial condi-
tions of a system, one could predict its future state. Not
only in special relativity one must move forward in time,
but also the speed of light puts a limit on how fast some-
thing can move. As a result, any signal must stay inside
the light cone of each event.

Given a spacetime with a speci�c metric gµν , it is rea-
sonable to portrait its causal structure (de�ned by the
light cones) as a whole. A conformal diagram is a dia-
gram of a spacetime with the metric in a clever coordi-
nate system. One works with a timelike coordinate and
a spacelike one, and the radial light cones are straight
lines just like in Minkowski spacetime [3]. Futhermore,
one brings in�nity to some �nite value of coordinates, in
order to capture global properties and then the causal
structure.

Null curves remain invariant under conformal transfor-
mations, i.e., under local change of scale. One can per-
form this by multiplying the original metric by some non-
zero function dependent of spacetime gµν → ω2(x) gµν .
There is in �at spacetime a coordinate transformation
that permits us to see the whole spacetime at once, and
leads us to a metric that is conformally related to the
Minkowski one. Such coordinates, T and R, have ranges:

0 ≤ R < π, |T |+R < π, (5)

and they are related to the Minkowski metric

ds2 = −dt2 + dr2 + r2 dΩ2 (6)

via

ds2 = ω−2(T,R)
(
−dT 2 + dR2 + sin2R dΩ2

)
, (7)

where ω(T,R) = cosT + cosR. The result is the confor-
mal diagram in �gure 1.

Figure 1: Conformal diagram for �at spacetime [5]

.

The format of the diagram allows us to subdivide the

conformal in�nity into the following regions:

i+ = future timelike in�nity

i0 = spatial in�nity

i− = past timelike in�nity

I+ = future null in�nity

I− = past null in�nity

Asymptotically �at spacetimes share the structure of
I+, i0, and I− with Minkowski spacetime [3].

IV. SCHWARZSCHILD BLACK HOLES

Given Einstein's equation, a next step is to analyze
the case of a spherically symmetric �gravitational �eld�,
which is, with good approximation, the type generated
by planets and stars, for example. The spherically sym-
metric vacuum solutions are automatically static by the
Birkho�'s theorem in GR; the solution is unique and
given by the Schwarzschild metric:

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2dΩ2,

(8)
where M is interpreted as the mass of the object that
generates the �gravitational �eld� [3].
The curvature of spacetime can manifest itself in the

twisting of light cones. One can �nd the radial null curves
by setting the angular coordinates constant and ds2 = 0.
Doing this in (8), one �nds:

dt

dr
= ±

(
1− 2GM

r

)−1
. (9)

Two things must be highlighted. First, as r → ∞,
dt/dr → 1, which tells us the metric (8) is asymptotically
�at. Second, as r → 2GM , dt/dr → ±∞. This shows
an apparent incapacity to reach the Schwarzschild radius
rS = 2GM . An inertial observer at in�nity would see
something near rS moving more and more slowly, with
time, toward rS , with increasing redshift. This is an
artifact of coordinate system choice; an object near rS
can, in fact, cross rS in a �nite amount of proper time.
To see this, the tortoise coordinate is introduced:

r∗ = r + 2GM ln
( r

2GM
− 1
)
, (10)

as well as coordinates naturally adapted to the null
geodesics:

v = t+ r∗ u = t− r∗, (11)

so that v = const describes ingoing null geodesics, and
u = const outgoing ones. By choosing to use the original
coordinate r and the new coordinate v, one �nds the
metric in the ingoing Eddington-Finkelstein coordinates:

ds2 = −
(

1− 2GM

r

)
dv2+(dv dr+dr dv)+r2dΩ2. (12)
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The light cones are well-behaved in rS and this hyper-
surface is at a �nite coordinate value. Furthermore, it
acts as a no-return point, so a particle that crosses the
Schwarzschild radius can never come back. The hyper-
surface r = rS is an event horizon. An observer outside
rS cannot receive any type of information from the inside
of rS .

The Schwarzschild solution must be extended to points
r < rS , since real particles can cross the event horizon.
For that matter are de�ned the following coordinates:{

T = 1
2 (v′ + u′)

R = 1
2 (v′ − u′)

, (13)

with range

−∞ ≤ R ≤ ∞, T 2 < R2 + 1, (14)

and where v′ = ev/4GM and u′ = −e−u/4GM . Therefore,
the metric becomes:

ds2 =
32G3M3

r
e−r/2GM (−dT 2 + dR2) + r2dΩ2, (15)

with r de�ned implicitly by T and R.

The coordinates (T,R, θ, φ) are the Kruskal coordi-
nates. The Kruskal solution (15) is the analytic extension
of the Schwarzschild solution (8), even though it is not
complete since it has an intrinsic singularity at r = 0 [6].
The global structure of the spacetime is represented in
the conformal diagram of �gure 2.

Figure 2: Conformal diagram for Schwarzschild space-
time [7]

.

The maximally extended Schwarzschild solution not
only describes a black hole, but also a white hole and an-
other asymptotically �at region, connected to our space-
time by a wormhole [3]. It is a very idealized situation,
and the presence of matter anywhere in this spacetime
could drastically change its properties.

V. MORE GENERAL BLACK HOLES

One looks for spherically symmetric vacuum solutions
for Einstein's equation not only for mathematical rea-
sons, but also because there are in nature massive objects
with such a symmetry. Planets, for example, have an ir-
regular surface and so one has to take into account other
parameters in order to have a better description of the
exact �eld. It can be done by writing the metric in mul-
tipole terms, leading to a very di�cult calculation. For
black holes the story is di�erent. There are established
theorems [8] that state that the external �gravitational
�eld� of a black hole reduces to that of a Kerr-Newman
black hole, described by only three parameters: mass,
charge, and angular momentum [9�11]. This is known as
the no hair theorem. In such a case one has stationary
asymptotically �at solutions, as one is describing the �-
nal stage of a gravitational collapse and the gravitational
in�uence must be negligible in�nitely far away from the
black hole. So, a conformal diagram of this type of black
hole will share I+, i0, and I− with �at spacetime, just
like in �gure 3.

Figure 3: A generic conformal diagram for an asymptot-
ically �at spacetime with an event horizon [3]

.

The Cosmic Censor Conjecture states that a complete
gravitational collapse of a body never results in a naked
singularity, but rather in a singularity �protected� by an
event horizon, i.e., a black hole [8]. Assuming the Weak
energy condition and the Cosmic Censor Conjecture, it
has been found [2] that in an asymptotically �at space-
time the area of a future event horizon is nondecreasing.
This is Hawking's area theorem.
An event horizon is the boundary between events that

can in�uence I+ from those that cannot. J−(S) is the
set of points in the spacetime that can be reached from
S through past directed causal paths. One can de�ne an
event horizon as the boundary of J−(I+)[3]. The event
horizon is a null hypersurface, so it has a null normal vec-
tor that is also tangent to it. One can enquire how, given
a spacetime metric, �nd if there is any event horizon. It
is fairly simple to �nd a candidate for a horizon if the
coordinates were chosen wisely, in a way that the type of
hypersurfaces changes from timelike to null for some �xed
r = rH . In such a case the norm grr = gµν(∂µr)(∂νr)
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becomes zero, where ∂µr is a dual-vector that is nor-
mal to the hypersurfaces. Of course, in Schwarzschild
grr = 1 − 2GM/r, and so rH = 2GM , as we already
know. Charged and rotating black holes are described
by solutions that are more commonly presented in coor-
dinates adapted to the event horizons.
Right know the main interest is to describe a rotating

black hole, with a symmetry around an axis of rotation,
and it will be considered stationary solutions (the case
that there is a timelike Killing vector). The Kerr metric
(16) describes a stationary, axissymetric vacuum solution
of Einstein's equation (3).

ds2 =

{
−
(

1− 2GM r

ρ2

)
dt2

− 2GMar sin2 θ

ρ2
(dt dφ+ dφ dt) +

ρ2

∆
dr2 + ρ2dθ2 (16)

+
sin2 θ

ρ2
[
(r2 + a2)2 − a2∆ sin2 θ

]
dφ2
}

Where ∆(r) = r2 − 2GMr + a2 and ρ2(r, θ) = r2 +
a2 cos2 θ. In this case, the parameters areM (mass of the
black hole) and a (angular momentum per unit mass).
Replacing {2GMr} for {2GMr − G(Q2 + P 2)} in (16)
one �nds the Kerr-Newman metric, which describes a
rotating and charged black hole. Q is the total electric
charge, and P the total magnetic one.
Isometries are symmetries of the metric. If the metric

is independent of some coordinate σ∗, then the Killing
vector K = ∂σ∗ generates the isometry. In this case,

∂σ∗gµν = 0 ⇒ dpσ∗

dτ
= 0, (17)

where pµ is the momentum of a particle following a time-
like geodesics and τ is the proper time of the parti-
cle. So, related to this simmetry, there is a conserved
quantity. It is possible to write in terms of components
Kµ = (∂σ∗)µ = δµσ∗

, so pσ∗ = Kνpν = Kνp
ν . One can

write (17) in a covariant manner as:

∇(µKν) = 0 ⇒ pµ∇µ(Kνp
ν) = 0. (18)

The left hand side equation is Killing's equation, which
Killing vector �elds satisfy. A stationary solution can
have the coordinates adapted in a way that the metric
components are time independent, and so the metric has
a Killing vector ∂t, asymptotically timelike. If there is a
Killing vector �eld X µ that is null over a null hypersur-
face Σ, then Σ is a Killing horizon of X µ. If the spacetime
is stationary, it has a Killing vector X µ = Kµ+ΩHR

µ for
some constant ΩH , where K

µ = (∂t)
µ and Rµ = (∂φ)µ.

∂φ is the Killing vector associated with the axial symme-
try. In the case of static black holes, the event horizon
is a Killing horizon for Kµ. Hawking showed that any
stationary black hole must have its event horizon as a
Killing horizon for some X µ [3].
The Boyer-Lindquist coordinates (t, r, θ, φ) used in (16)

are adapted to the horizon, so one can �nd the event

horizon location by calculating grr = 0. It is zero when

∆(r) = r2 − 2GMr + a2 = 0. (19)

The situation can be divided into three cases: (1)
GM > a, (2) GM = a and (3) GM < a. The �rst
one has more physical interest, since the second one rep-
resents a very unstable situation and the third one leads
to a naked singularity. Solving (19) one �nds two null
hypersurfaces that represent distinct horizons:

r± = GM ±
√
G2M2 − a2. (20)

r+ represents the outer horizon, an event horizon, and
r− the inner horizon, which is a Cauchy horizon. Even
though they are not Killing horizons for K = ∂t, it is
useful to calculate the norm:

KµKµ = − 1

ρ2
(∆− a2 sin2 θ), (21)

which is positive at r = r+, meaning that the Killing
vector is already spacelike at the outer horizon, except
when θ = 0, π, where it is null [3]. The set of points
where Kµ is null constitutes the stationary limit surface,
and the region between it and the outer event horizon
is called ergosphere. It is possible to enter and exit the
ergosphere, but not to remain stationary inside it. One
�nds the singularity by setting ρ = 0, because in this case
the curvature scalar diverges. In this situation, r = 0
and θ = π/2. As a result of r not being a ordinary radial
coordinate, this singularity is a ring in space. Figure 4
shows the structure of a Kerr black hole.

Figure 4: Horizon structure of the Kerr Black Hole [12]

.

VI. BLACK HOLE THERMODYNAMICS

A triumph of Thermodynamics is to describe the state
of macroscopic systems in equilibrium by a few param-
eters such as volume, temperature and number of parti-
cles. As already seen, stationary black holes are described
by a few parameters: mass, charge and angular momen-
tum. Additionally, one can make an analogy not only
between thermodynamics quantities and the ones that
are related to black holes, but also between the Laws of
Thermodynamics and the Laws of Black Hole Mechanics.
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A. The Penrose Process

One can inquire whether it is possible or not to ex-
tract energy from a black hole. Classically, energy cannot
be extracted from a nonrotating, neutral (Schwarzschild)
black hole [13], since, in this case, the energy consists
only of its mass. Given the Kerr metric (16), consider
a particle moving along a geodesic with the following 4-
momentum, energy, and angular momentum:

pµ = m
dxµ

dτ
, E = −Kµp

µ, L = Rµp
µ.

The vectors Kµ and pµ are both timelike at in�nity
and the energy is necessarily positive. Since Kµ becomes
spacelike when one crosses the stationary limit surface,
one can wonder if there could exist any particle with
E < 0 in the ergosphere. Imagine that you are mov-
ing outside the ergosphere in a geodesic while holding a
heavy rock, and the system (you plus the rock) have 4-
momentum p(0)µ. When you reach the ergosphere, you
throw the rock into the black hole and, by conservation
of momentum,

p(0)µ = p(1)µ + p(2)µ, (22)

where p(1)µ and p(2)µ are your and the rock's 4-
momentum, respectively, after the fall. It is possible
to arrange the rock's fall in such a way that its en-
ergy E(2) = −Kµp

(2)µ is negative. Penrose showed [3]
that it is also possible to throw the rock into the black
hole and then follow a geodesic back outside the ergo-
sphere, so in the end you would necessarily have an en-
ergy E(1) = −Kµp

(1)µ that is positive. Since the energy
conservation must hold

E(0) = E(1) + E(2), (23)

after all you come back with more energy than when
you entered (E(1) > E(0)). Energy does not come from
nowhere. In this case it is extracted from the black hole,
decreasing its angular momentum as you throw your rock
against the rotation �ow. This process of energy extrac-
tion is called The Penrose Process, and it increases the
black hole area as you add mass to it and decrease its
angular momentum J . The process has its maximum ef-
�ciency when the black hole area remains unaltered [13].
Since the Kerr black hole is stationary, it has a Killing

vector �eld X µ = Kµ + ΩHR
µ that becomes null at

the outer event horizon. Therefore, if a particle with
4-momentum p(2)µ crosses the event horizon in a future
directed path,

p(2)µXµ < 0 ⇒ L(2) <
E(2)

ΩH
, (24)

and, considering the variations of the black hole mass
and angular momentum δM = E(2), δJ = L(2),

δJ <
δM

ΩH
. (25)

B. The Laws of Black Hole Mechanics and of

Thermodynamics

There is related to the outer event horizon, a Killing
horizon for X µ, a function κ named surface gravity, which
satis�es:

∇µ(X νXν) = −2κX µ. (26)

The dominant energy condition incorporates the as-
sumption that massive objects should follow timelike or
null world lines [4]. The validity of this condition implies
the Zeroth Law of Black Hole Mechanics: the surface
gravity κ must be uniform over the event horizon of a
stationary black hole [14]. This statement can be as-
sociated with the Zeroth Law of Thermodynamics: the
temperature T is uniform over a system in thermal equi-
librium [1].
To calculate the area of the outer event horizon, one

needs to �nd the induced metric γij on it, which is the
expression (16) with r = r+, dt = 0 and dr = 0, so i, j
run over {θ, φ}. The result is:

γij = (r2++a2 cos2 θ) dθ2+

[
(r2+ + a2)2 sin2 θ

r2+ + a2 cos2 θ

]
dφ2. (27)

The area is given by the integral:

A =

∫ √
|γ| dθ dφ =

∫
(r2+ + a2) sin θ dθ dφ, (28)

and, then, is

A = 4π(r2+ + a2). (29)

De�ning the irreducible mass by

M2
irr =

A

16πG2
, (30)

its di�erentiation is:

δMirr =
a

4GMirr

√
G2M2 − a2

(Ω−1H δM − δJ). (31)

Equations (25) and (31) imply δMirr > 0. So, from
the de�nition (30), it is straightforward that the area of
a stationary black hole is nondecreasing with time. This
is a special case of Hawking's area theorem, or the Sec-
ond Law of Black Hole Mechanics [15]. It was deducted
for stationary black holes, but it is valid for any type of
black hole. Moreover, if the fusion of two distinct black
holes happens, then the area of the resulting black hole
is greater than the sum of the two areas of the previ-
ous ones [1, 15]. Such results lead to a correspondence
between the area theorem and the Second Law of Ther-
modynamics, which states that the entropy of an isolated
system can never decrease.
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From (30), (31), and considering the surface gravity

κ =

√
G2M2 − a2

2GM(GM +
√
G2M2 − a2)

, (32)

one obtains

δM =
κ

8πG
δA+ ΩHδJ. (33)

The term ΩHδJ in (33) can be considered as the work
done on the black hole by throwing matter in it [3]. The
expression (33) features a similar structure with the First
Law of Thermodynamics:

δE = TδS − PδV, (34)

so it is called the First Law of Black Hole Mechanics.
The following identi�cations are made:

E ↔ M

S ↔ A/4G (35)

T ↔ κ/2π

In summary, the Laws of Black Hole Mechanics can be
related to the ones of Thermodynamics as follows:

Zeroth Law of Thermodynamics:

The temperature T is uniform over a system in thermal
equilibrium

Zeroth Law of Black Hole Mechanics:

The surface gravity κ is uniform over the event horizon
of a stationary black hole

First Law of Thermodynamics:

δE = TδS − PδV

First Law of Black Hole Mechanics:

δM =
κ

8πG
δA+ ΩHδJ

Second Law of Thermodynamics:

δS ≥ 0

Second Law of Black Hole Mechanics:

δA ≥ 0

Classically, the third identi�cation in (35) is inconsis-
tent. One cannot associate a non-zero temperature to
a black hole, since nothing can get out of it and, there-
fore, it does not emit radiation. But, when taking into
account Quantum Mechanics, the association becomes

valid because of Hawking's radiation, which associates a
well de�ned temperature to the black hole.
Given the expression (32) one can see that it satis�es

κ = 0 for GM = a, the unstable �extreme� Kerr black
hole. The black hole has a non-zero area, thus there isn't
for black holes an analogue of the third law of thermo-
dynamics, considering the formulation which asserts that
S → 0 as T → 0 [14].
In order to establish a universal second law, Beken-

stein de�ned the total entropy of the universe as the sum
Sbh + S, where Sbh = A/4G is the black hole entropy
and S the entropy of everything in the universe that is
outside the event horizon. The Generalized Second Law
of Thermodynamics (GSL) states that the total entropy
never decreases with time:

δ(S +A/4G) ≥ 0. (36)

One can imagine a box with matter inside that is hang-
ing by a massless rope near a black hole. Because of its
content, it carries energy and entropy. The box can be
opened at any chosen position, letting the matter fall into
the black hole. The more the box approaches the event
horizon, the lower will be the energy measured by an ob-
server at in�nity, since the value depends on the redshift
factor. Opening the box arbitrarily close to the event
horizon leads to an imperceptible increase of the black
hole area/entropy. In this situation, the universal varia-
tion of entropy will be equal to the variation of entropy
outside the black hole, which is negative, since the matter
previously inside the box gets lost inside the black hole.
After the theoretical discovery of Hawking's radiation, it
was shown that a static observer measures a radiation
around the black hole with a temperature that depends
on the distance to the event horizon and that, conse-
quently, creates a pressure gradient. This is responsible
for a �buoyancy force� on the box that counterbalances
the gravitational force at a point that is not arbitrarily
close to the event horizon. It follows that there exists
a minimum energy that is dropped into the black hole,
and then a minimum increase of the horizon area. Fi-
nally, it leads to a positive variation of the total entropy,
and hence the GSL is not violated [16].

VII. CONCLUSION

The geometric aspect of General Relativity and its
power to describe the nature of spacetime were discussed,
as well as the solutions of Einstein's equation that de-
scribe black holes, regions in spacetime where gravity is
so strong that even light can not get out. Stationary
black holes are totally described by mass, total charge,
and angular momentum, and energy can be extracted
from them by a classical process. Finally, the Laws of
Black Hole Mechanics have an analogy with the Laws
of Thermodynamics that, classically, has some inconsis-
tencies which are �xed considering Quantum Mechan-
ics. The study of Black Hole Thermodynamics shows
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an important connection between General Relativity, the
Quantum Theory and Thermodynamics, and so further
developments on this subject could highlight aspects of
�quantum gravity�.
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