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One of the main reasons to study the internal structure of neutron stars is to connect astrophysical
observations and microphysical aspects of dense matter, a fact that has increasingly attracted the
scientific community attention. The study of compact objects is also interesting regarding the
emission of gravitational waves, since the detection of it is something totally feasible today, as shown
by the event GW150914 detected by Laser Interferometric Gravitational Wave Observatory (LIGO).
Combining these two subjects relative to neutron stars, we study non-radial oscillations of strange,
hadronic and hybrid non-rotating stars in the Cowling approximation. Our focus is to analyze NS
models with maximum masses above the mass of the recently observed pulsars PSR J1614-2230 and
PSR J0348-0432 withM ≈ 2M⊙. For hadronic EoSs we employ two different parametrizations (GM1
and NL3) of the same relativistic mean-field model and one based on Skyrme effective interactions
(SLy4). For quark matter, we employ a generic MIT bag model that allows to include the effect
of finite quarks masses and the color superconductivity phenomenon and the Nambu-Jona-Lasinio
(NJL) model for three-flavor quark matter. Our results show that the fundamental oscillation mode
is sensitive to the equation of state, but it is rather difficult to distinguish hadronic, strange and
hybrid stars by just observing the f -frequency because of the overlap of the curves, mainly when
the masses are around 2 M⊙.

PACS numbers: 97.60.Jd, 26.60.Kp, 97.10.Sj, 95.85.Sz

I. INTRODUCTION

The study of the internal composition of neutron stars
(NSs) is a key topic on modern astrophysics. The behav-
ior of the dense matter strongly impacts many potentially
observable properties, such as the mass-radius relation,
rotational properties, oscillation modes, surface temper-
ature and the timescales of cooling and deleptonization
[1]. Therefore, astronomical observations may impose
constraints to the study of dense matter at a microscopic
level. Big observatories, like the Five hundred meter
Aperture Spherical Telescope (FAST) and the Square
Kilometer Array (SKA) will be capable of finding ten
times more pulsars on binary systems and millisecond
pulsars than detected until today, increasing proportion-
ally the number of compact stars’ masses measurements.
Moreover, X-ray satellites such as NICER and LOFT,
plane to measure the radius of compact stars with great
precision. These observations might give fundamental in-
formations about the equation of state (EoS) of the dense
matter.

On the other hand, a new window of observation of the
universe was opened with the detection of gravitational
waves (GWs) by LIGO on September 14, 2015 [2]. After
this event, many other detections are expected by LIGO
and the second generation GW interferometric detectors
(e.g. Advanced Virgo and KAGRA [3]) including binary
mergings involving NSs [4–6]. When the desired sensi-
tivity is reached, what is expected to around 2021, such
instruments will be ten times more sensitive than the first
generation and will reach approximately 105 galaxies al-
lowing the detection of NSs fusions at a rate of 1 per
month. It is known that several oscillation modes of NSs
may emit GWs [7, 8] and such sensitivity will probably

allow the detection of pulsation modes of excited compact
stars in binary fusions or pulsations of newborn compact
objects associated with core collapse supernovae.

Nowadays, the observational evidence is not conclu-
sive about the internal composition of compact stars be-
cause all the measured stellar properties like mass, ra-
dius and cooling time are compatible with many equa-
tions of state (EoSs) describing stars composed by purely
hadronic matter, pure quark matter (strange stars) or hy-
brid matter (where quark matter is present only at very
high densities). However, the recent discovery of the pul-
sars PSR J1614-2230 and PSR J0348-0432 with masses
close to 2 ∼ M⊙ [9, 10] and the likely existence of more
massive NSs [11, 12] strengthens the idea that some kind
of exotic matter might exist in such objects.

Several works have been carried out in the last four
decades in order to describe the non-radial oscillatory
properties of NSs [7, 13–21]; however, these works (with
the exception of [21]) considered EoSs that resulted
mostly in maximum stellar masses under 2M⊙, there-
fore inconsistent with the observation of the pulsars PSR
J1614-2230 and PSR J0348-0432. Thus, it’s important
to re-analyze the oscillation spectra because changing the
EoS may bring new ways to distinguish hadronic stars,
strange stars and hybrid stars.

In this work we study the fundamental mode of non-
radial oscillations for strange, hadronic and hybrid stars
considering the Cowling approximation [22]. For quark
matter, we consider a Nambu-Jona-Lasinio (NJL) model
found in Ref. [23] and a generic MIT bag model that al-
low us to analyze, e.g., the color superconductivity phe-
nomenon and the effects of finite strange quark mass. For
hadronic EoSs, we employ two different parametrizations
GM1 and NL3 [24, 25] of the same relativistic mean-field
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model and a model based on Skyrme effective interac-
tions, SLy4 [26].

The paper is organized as follows: in Sec. II we de-
scribe the EoSs used for quark and hadronic matter. In
Sec. III, the equilibrium stellar model employed in this
work is discussed, including the mass-radius relation for
the EoSs adopted. In Sec. IV, we present a brief review of
the formalism of non-radial oscillations in compact stars
within the Cowling approximation. In Sec. V, we present
our results and in Sec. VI we discuss the main conclu-
sions of the work. We consider c = G = ℏ = 1, unless
explicitly stated.

II. EQUATIONS OF STATE

The exact internal composition of NSs is unknown,
but we know it might be made by high density bary-
onic matter. Due to this uncertainty, several EoSs are
used in order to confront the observational evidence. The
main hypothesis for a NS interior is that matter is highly
degenerate and at thermodynamic equilibrium, so that
temperature effects can be neglected [27]. With these
conditions, the EoS becomes one-parameter dependent:
ρ(nB), p(nB) or ρ(p), where ρ is the energy density, p the
pressure and nB the baryon number density.

The only analytical EoS in this paper is the MIT EoS,
as will be explained soon. The other EoSs are given in
tables obtained in previous works, so it is necessary to
interpolate between their data to extract the necessary
information. We implemented a linear interpolation for-
mula presented on page 107 of Ref. [28].

A. Hadronic phase

The relativistic mean-field theory is widely used to de-
scribe hadronic matter in compact stars. In this work we
employ the following standard Lagrangian [24, 25]:

LH =
∑
B

ψ̄B [γµ(i∂
µ − gωBω

µ − 1

2
gρB τ⃗ .ρ⃗

µ)

− (mB − gσBσ)]ψB +
1

2
(∂µσ∂

µσ −m2
σσ

2)

− 1

4
ωµνω

µν +
1

2
m2

ωωµω
µ − 1

4
ρ⃗µν .ρ⃗

µν

+
1

2
m2

ρρ⃗µ.ρ⃗
µ − 1

3
bmn(gσσ)

3 − 1

4
c(gσσ)

4

+
∑
L

ψ̄L[iγµ∂
µ −mL]ψL, (1)

for matter composed by nucleons and electrons. Lep-
tons L are treated as non-interacting and baryons B are
coupled to the scalar meson σ, the isoscalar-vector me-
son ωµ and the isovector-vector meson ρµ. For more de-
tails about the EoS obtained from the above Lagrangian,
see [29] and references therein. There are five constants
in the model that are fitted to the bulk properties of

TABLE I: Coupling constants for the parametrizations GM1
[25] and NL3 [32].

Set GM1 NL3

mσ (MeV) 512 508.194

mω (MeV) 783 782.501

mρ (MeV) 770 763

gσ 8.91 10.217

gω 10.61 12.868

gρ 8.196 8.948

b 0.002947 0.002055

c -0.001070 -0.002651

nuclear matter [25]. In this paper we use two different
parametrizations shown in Table I. At low densities we
use the Baym, Pethick and Sutherland (BPS) model [30]
and the transition pressure is determined by the Gibbs
criterion (the Gibbs free energy per baryon of the two
phases is equal at the transition pressure) [31]. More de-
tails about this criterion will be given in the discussion
about hybrid stars.
The SLy4 EoS is based on the effective nuclear interac-

tion SLy (Skyrme Lyon) of the Skyrme type and for fur-
ther details the reader is referred to, e.g., [26] and refer-
ences therein. For densities ρ < ρND = 4.3× 1011g/cm3,
we adopted the HP94 EoS [33] as did in ref. [26].

B. Quark phase

For the quark phase, we use a generic MIT bag model
EoS and the Nambu-Jona-Lasinio model. The first is
presented in Ref. [34] with free parameters B, a2 and
a4, which could describe several physical aspects. The
model is defined by the following grand thermodynamic
potential [34]

Ω = − 3

4π2
a4µ

4 +
3

4π2
a2µ

2 +B +Ωe (2)

where µ = (µu+µd+µs)/3 is the quark chemical potential
and Ωe is the grand thermodynamic potential for the
electrons e. Considering a core made by quarks, we can
neglect the thermodynamic contribution of the electrons
there, because of the following reason. Applying local
charge neutrality, we have 2

3nu−
1
3nd−

1
3ns = ne, where ni

is the number density of the ith particles involved. From
the chemical equilibrium, µd = µu + µe and µs = µd,
thus we get at zero temperature the relation [34, 35]:

µe = m2
s/(4µ)−m4

s/(48µ
3) +O(m6

s/µ
5) (3)

so µe/µ ∼ m2
s/µ

2. The influence of electrons in quark
matter can be estimated by Ωe/Ω ∼ O(µ4

e/µ
4) ∼

O(m8
s/µ

8). Concerning the core of a hybrid star or a
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strange star, the quark matter EoS is at the high den-
sity regime where µ is significantly larger than ms (typi-
cally, µ ∼ 300 MeV and ms ∼ 100 MeV) . Therefore, the
thermodynamic contribution of the electrons is small to
the EoS and then to macroscopic stellar properties [35].
Thereby, we neglect the electron’s contribution in Eq. (2)
for the star core. Regarding the star’s crust of strange
stars, more care is necessary. Since µ is not significantly
larger than ms, we can not discard the electron’s role in
thermodynamic quantities. However, for this work, we
assume that even for the strange stars’ crust, this ap-
proximation is valid, but, emphasizing that it’s worth
studying this topic more carefully.

The above phenomenological model is interesting be-
cause it permits to explore many factors. The parameter
a4 ranges between 0 ≤ a4 ≤ 1, where a4 = 1 indicates an
ideal gas. If we consider the Quantum Chromodynam-
ics (QCD) corrections, a4 ̸= 1 [34]. According to Ref.
[34], a reasonable value is a4 ≈ 0, 7. We get the standard
MIT bag model setting a4 = 1 and a2 = m2

s. The influ-
ence of strong interactions on the star can be studied by
varying a4 and the effect of the color superconductivity
phenomenon in the Color Flavor Locked (CFL) phase can
be explored setting a2 = m2

s − 4∆2, being ∆ the energy
gap associated with the quark pairing [34, 35]. The bag
constant B is related to the confinement of the quarks,
representing in a phenomenological way the vacuum en-
ergy [36].

Working with Eq. (2), it is possible to obtain a rela-
tion p(ρ) or ρ(p) which is necessary to solve the stellar
structure equations (see below). Firstly, we have to get
the pressure as a function of the chemical potential by
p = −Ω. The baryon number density nB is calculated
by:

nB = −1

3

∂Ω

∂µ
=

1

π2
a4µ

3 − 1

2π2
a2µ. (4)

Using the thermodynamic relation Ω = ρ − 3µnB , we
have

ρ = Ω+ 3µnB = −p+ 3µnB . (5)

Replacing (4) in (5),

ρ =
9

4π2
a4µ

4 − 3

4π2
a2µ

2 +B, (6)

then, solving (6) for µ2, one obtains

µ2 =
1

2

a2 + a2
√
1 + 16π2a4

a2
2

(ρ−B)

3a4

 . (7)

Finally, linking (7) with (2) and p = −Ω, we arrive to

p(ρ) =
1

3
(ρ−4B)− a22

12π2a4

[
1 +

√
1 +

16π2a4
a22

(ρ−B)

]
.

(8)

On the other hand, depending on the values of a2, a4
and B, either hybrid stars or strange stars may exist.
The former only exist if the transition pressure is greater
than zero. In this paper, it is assumed that the interface
between hadrons and quarks is a sharp discontinuity de-
termined by Gibbs condition where pquarks = phadrons
and gquarks = ghadrons, being g = (ρ + p)/nB = 3µ the
Gibbs free energy per baryon [31, 35]. The quark-hadron
interface will be located at p > 0 only if B > Bmin for
given values of a2 and a4 [35]:

Bmin =
g2(0)

108π2
[g2(0)a4 − 9a2], (9)

where g(0) is the Gibbs free energy per baryon at null
pressure. By the Gibbs condition, g(0) is the energy per
baryon of pressureless hadronic matter, which we con-
sider to be that of the iron, approximately 930 MeV.
However, we also need that the hadronic phase in a

hybrid star is not in metastable equilibrium, i.e. the
ud deconfined quark matter, must be less energetically
favorable than hadronic matter composed by protons and
neutrons, thus gud(0) > 930 MeV. For ud quark matter
without electrons and in the massless limit, one has that
[35]

Ω2f = −p̃ = − 24a4
4π2(1 + 21/3)3

µ̃4 +
2a2
4π2

µ̃2 +B, (10)

where µ̃ ≡ (µu + µd)/2 = (1 + 21/3)µu (due to local
charge neutrality). From ñb = − 1

3 (∂Ω2f/∂µ̃) and ϵ̃ =
−p̃ + nuµu + ndµd = −p̃ + 3ñbµ̃, one has the 2-flavor
stability condition B > B̃min, where [35]

B̃min =
g2(0)

54π2

[
4g2(0)a4
(1 + 21/3)3

− 3a2

]
. (11)

Figure 1 of Ref. [35] clarifies the issue of stability with a
plot delimiting regions for absolutely stable strange stars
and hybrid stars in a (B1/4, a4) plane. In view of this
discussion, we assume for MIT strange stars the values
of the parameters contained in Table II. In this table, we

consider a
1/2
2 = 100 MeV, in order to explore Figure 1 of

Ref. [35]. We also build hybrid stars with this EoS, but
with different parameter sets, as will be explained in the
next subsection.
The other quark EoS used in this work is the SU(3)

NJL model with scalar-pseudoscalar, isoscalar-vector and
’t Hooft six fermion interaction, which is present in ref.
[23]. The Lagrangian density of the model is [23]:

LQ = ψ̄(iγµ∂
µ − m̂)ψ

+ gs

8∑
a=0

[(ψ̄λaψ)2 + (ψ̄iγ5λ
aψ)2]

− gv

8∑
a=0

[(ψ̄γµλ
aψ)2 + (ψ̄γ5γµλ

a ψ)2]

+ gt{det[ψ̄(1 + γ5)ψ] + det[ψ̄(1− γ5)ψ]}, (12)
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TABLE II: Parameters a2, a4 and B for strange stars within
the MIT bag model EoS.

Set B1/4[MeV] a4 a
1/2
2 [MeV]

MIT1 119 0.5 100

MIT2 122 0.5 100

MIT3 127 0.5 100

MIT4 132 0.7 100

MIT5 136 0.7 100

MIT6 141 0.7 100

MIT7 141 0.9 100

MIT8 146 0.9 100

MIT9 152 0.9 100

being ψ = (u, d, s) the quark fields, λa(0 ≤ a ≤ 8) the
SU(3) flavor matrices, m̂ = diag(mu,md,ms) the quark
current mass, and gs, gv and gt coupling constants. The
mean-field thermodynamic potential density Ω for a given
baryon chemical potential µ at T = 0, is given by

Ω = − ηNc

∑
i

∫ Λ

kFi

p2 dp

2π2

√
p2 +M2

i + 2gs
∑
i

⟨ψ̄ψ⟩2i

− 2gv
∑
i

⟨ψ†ψ⟩2i + 4gt⟨ūu⟩⟨d̄d⟩⟨s̄s⟩

− ηNc

∑
i

µi

∫ kFi

0

p2 dp

2π2
− Ω0, (13)

where the sum is over the quark flavor (i = u, d, s),
the constants η = 2 and Nc = 3 are the spin and
color degeneracies, and Λ is a regularization ultravi-
olet cutoff to avoid divergences in the medium inte-
grals. The Fermi moment of the particle i is given by
kFi = θ(µ∗

i −Mi)
√
(µ∗2

i −M2
i ), where µ

∗
i is the quark

chemical potential modified by the vectorial interaction,
i.e. µ∗

u,d,s = µu,d,s − 4gv⟨ψ†ψ⟩u,d,s. All the parameters

used in this paper are the same as in Ref. [23]. Also, as
in Ref. [23], gv is treated as a free parameter by the fact
that the masses of the vector mesons are not dictated by
chiral symmetry. To obtain the EoS, it was assumed that
matter is charge neutral and in equilibrium under weak
interactions [23].

The treatment for the Ω0 term assumed in this paper is
the same as in Ref. [23]. Then, here we also explore the
influence of a change Ω0 −→ Ω0+δΩ0 in the macroscopic
properties of compact stars. It is important to note that,
for this NJL parametrization, it is not possible to build
strange stars [23], so we just use it for hybrid stars.

C. Hybrid matter

For hybrid stars, we combine the MIT and the NJL
EoSs with the NL3 EoS. In the case MIT+NL3, we use

a4 = 0.5 and B1/4 = 135, 136, 137,...,145 MeV for a
1/2
2 =

100 MeV and a
1/2
2 = 150 MeV. The motivation to use

a
1/2
2 = 100 MeV and the cited values of a4 and B1/4 is

to compare with the results of Ref. [37]. We also use

a
1/2
2 = 150 MeV in order to analyze the influence of a2

in the star’s stability and maximum mass. Regarding
NJL+NL3, we use gv/gs = 0.1, 0.2, 0.3 for δΩ0 = 0
and gv/gs = 0.2, 0.3, 0.4 for δΩ0 = −10 MeV/fm3 and
δΩ0 = −15 MeV/fm3. These parameters are adopted in
order to obtain stable configurations withMmax ⪆ 2M⊙,
as in Ref. [23]. The phase transition pressure is obtained
by the Gibbs condition gtran = gquarks = ghadrons at
ptran = pquarks = phadrons, where g = (ρ+ p)/nB , for all
hybrid stars [31].

III. STELLAR STRUCTURE EQUATIONS

The compact star’s equilibrium structure must be
taken into account to calculate non-radial oscillations.
We assume that compact objects are made of layers of
perfect fluids, whose stress-energy tensor is

Tµν = (ρ+ p)uµuν + pgµν , (14)

where uµ is the fluid’s four-velocity and gµν is the metric.
We also set a spherically symmetric background space-
time for the whole star given by the line element

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2 +sin2 θdϕ2), (15)

where ν(r) and λ(r) are metric functions with respect
to r. A mass function m(r) is defined as m(r) =
r(1 − e−2λ)/2 [31]. Solving Einstein’s equations, we get
the stellar structure equations (Tolman-Oppenheimer-
Volkoff (TOV) equations [38])

dp

dr
=

−(ρ(r) + p(r))(m(r) + 4πp(r)r3)

r(r − 2m(r))
, (16)

dν

dr
= − 1

ρ(r)

dp

dr

(
1 +

p(r)

ρ(r)

)−1

, (17)

dm

dr
= 4πr2ρ(r), (18)

where m(r) is the gravitational mass inside r, as mea-
sured in a proper frame of reference, and t, r, θ, ϕ form
the Schwarzschild coordinate system. It is necessary an
EoS p(ρ) to close the system of equations. The boundary
conditions are

m(r = 0) = 0, (19)

p(r = R) = 0, (20)

ν(r = R) =
1

2
ln

(
1− 2M

R

)
, (21)

being R the radius of the star and M = m(R). The
condition of Eq. (21) is necessary for the metric function
ν(r) smoothly match the Schwarzschild metric outside
the star [39].
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The TOV equations form a set of first order differential
equations. The integration of them is made by using a 5th

order Runge-Kutta method with an adaptive step, which
is explained in Sec. 16.2 of Ref. [28]. Besides that, it
is important to notice that the TOV equations have a
singularity at r = 0, so we have to start the integration
at a radius slightly larger than 0, e.g. 1 meter. To find
m, ν and p at this new point, we have to make a Taylor
series expansion around r = 0, as shown in Ref. [40].

Additionally, ν is not defined at r = 0. In order to
match the boundary condition given in Eq. (21), we start
the integration for an arbitrary value of ν and then, af-
ter the star’s surface is reached, subtract ν(R) and add
1
2 ln(1−

2M
R ) to all the values of ν through the star. There-

fore, Eq. (21) is satisfied and ν(r) is corrected all over
the star [39].

In view of the observations of the massive pulsars PSR
J1614-2230 with M = (1.97± 0.04)M⊙ [9] and PSR
J0348-0432 with M = (2.01± 0.04)M⊙ [10], the EoSs of
most interest for us are those that can build neutron stars
with M ⪆ 2M⊙. In order to know the maximum stellar
mass for each EoS, we solve the equations (16) and (18)
considering several values of central pressure and save the
maximum mass for each of them. With these points, we
plot the mass-radius relation for each EoS.

Figure 1 shows the mass-radius relations for all stel-
lar models used in this work. The horizontal black solid
line corresponds to M = 2.01 M⊙, the measured mass
of pulsar PSR J0348-0432, which is shown to visualize
the EoSs that produce maximum stellar masses above
this value. From these plots, we see that most models
allow Mmax ⪆ 2 M⊙. From panel (a) of Fig. 1, one
notices that there are only two NJL+NL3 sets that have
M < 2.01 M⊙: (δΩ0 = −15 MeVfm−3, gv/gs = 0.2) and
(δΩ0 = 0, gv/gs = 0.1). The maximum masses obtained
here are equivalent to those presented in Ref. [23]. The
M − R curves show a bend when they become hybrid
and in this transition we check the stellar stability. The
hadronic part of a mass-radius plot characterizes a sta-
ble configuration, so, according to the stability criterion
shown in Sec. 6.8 of Ref. [31], if dM/dR changes signal
at a critical point, the stability changes. Thus, we can
identify if a given combination of a quark matter EoS
and an hadronic EoSs can generate stable hybrid stars
with a sufficiently large maximum mass.

In panel (a) of Fig. 1, all the sets have stable hybrid
branches, except (δΩ0 = 0,gv/gs = 0.3), however, as said
before, (δΩ0 = −15 MeVfm−3, gv/gs = 0.2) and (δΩ0 =
0, gv/gs = 0.1) do not haveMmax ≥ 2.01M⊙. The stable
hybrid branch of (δΩ0 = −10 MeVfm−3, gv/gs = 0.4) is
almost imperceptible.

Panels (b) and (d) of Fig. 1 show the mass-radius

plot for hybrid stars combining MIT+NL3, for a
1/2
2 =

100 MeV and a
1/2
2 = 150 MeV, respectively, keeping

a4 = 0.5 and varying B. For a
1/2
2 = 100 MeV, all the

curves have a maximum mass above 2.01 M⊙ and also
have a large hybrid branch. This was expected, in view

of the results of Ref. [37]. Setting a
1/2
2 = 150 MeV, all

curves also have maximum mass above 2.01 M⊙, but the
stable hybrid branch is greatly reduced, therefore, we can
expect less stable configurations raising a2. All of them,
except for B1/4 = 142 MeV, have stable hybrid stars.
From Eq. (2) in the case of unpaired three-flavor quark

matter, we note that a
1/2
2 corresponds to ms, so, increas-

ing ms in this particular case, the stability decreases.
At panel (c) of Fig. 1, we show the mass-radius

relations for strange and hadronic stars, where we fix

a
1/2
2 = 100 MeV and vary B and a4. From this plot, it

is possible to conclude that increasing B, the maximum
mass decreases and, for fixed B, a larger a4 implies a
larger maximum mass.

IV. NON-RADIAL FLUID MODES FOR
COMPACT STARS

Quadrupole oscillations of compact stars emit gravita-
tional waves (GWs). The oscillations are damped as the
GWs carry out their energy. Such oscillations are called
quasinormal modes (QNMs) [22]. These modes have
complex frequencies, whose imaginary part represents the
damping rate and the real part the oscillation frequency,
analogous to electromagnetic waves. They are divided in
two categories: fluid modes and spacetime modes. The
first is split in f , p and g modes for non-rotating stars
and the latter in w and wII modes (there exist also the
so called trapped modes for spacetime modes, but they
are not compatible with well known EoSs) [22]. In this
work we focus on f modes, so we briefly explain the fluid
modes below:

• f -mode (fundamental mode): there exist just one
f mode for each l (from the spherical harmonic
Ylm). According to Ref. [41], the eigenfunction
for this mode does not have nodes inside the star
and decays from the star’s center to the surface.
The typical value of the f frequency for a neutron
star is 1.5−3 kHz [22];

• p-mode (pressure or acoustic mode): the restoring
force is caused by the pressure gradient inside the
star. They are labeled as p1, p2, p3,..., p∞ in or-
der from the lower to the higher frequency. They
strongly depend on the star composition. The p1
typical oscillation frequency for a neutron star is
4− 7kHz;

• g-mode (gravity mode): this mode arises from a
gravitational field discontinuity, e.g., a density dis-
continuity. They are labeled as g1, g2, g3,..., g∞ in
order from the higher to the lower frequency. The
typical oscillational frequency is less than 100 Hz.

The formalism for studying non-radial modes within
the theory of General Relativity was treated in the pio-
neering work of Thorne and Campollataro [42] and fur-
ther extended by other authors (see [13] and references
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FIG. 1: (a) Mass-radius plot for hybrid stars using NJL+NL3, where the labels indicate the value of δΩ0 in MeV fm−3 and
the ratio gv/gs. (b) Mass-radius graphic for hybrid stars using MIT+NL3 fixing a4 = 0.5, where the labels indicate the value

of a
1/2
2 in MeV and B1/4 in MeV. (c) Mass-radius plot for strange and hadronic stars, fixing a

1/2
2 = 100 MeV, where the labels

indicate the values of a4 and B1/4 in MeV. (d) Same caption as (b).

therein). The perturbation equations are decomposed
into spherical harmonics leading to two classes of oscil-
lations according to the parity of the harmonics. Even
(or polar) oscillations produce spheroidal deformations
on the fluid, while odd (or axial) oscillations produce
toroidal deformations (see e.g Kokkotas and Schmidt [8]
and references therein) [21]. For non-rotating stars com-
posed of a perfect fluid, the fluid axial oscillations lead to
a zero frequency trivial solution to the perturbation equa-
tions with vanishing pressure and density variations while
the space-time axial modes (w-modes or wII -modes) are
of non-zero frequency [21].

For polar oscillations the linearised field equations in-
side the star can be written as a system of three wave
equations, where two of them correspond to the pertur-
bations of the space-time and the other one to the den-
sity perturbations inside the star [8]. If the gravitational
field is very weak, we can neglect the two equations corre-

sponding to the metric perturbation and we only remain
with the one describing the fluid oscillations. This ap-
proach is known as the Cowling approximation and con-
siderably simplifies the analysis. This method was first
introduced by the Ref. [41] for the study of Newtonian
stars and subsequently adapted by Ref. [43] for the in-
vestigation of relativistic stars [21].

For typical relativistic stars, recent studies show that
the oscillation frequencies calculated by the complete lin-
earised equations of general relativity and by the Cowl-
ing approximation differ by less than 20 % for f -modes,
around 10% for p-modes [14] and less than a few percent
for g-modes [16]. This justifies its wide utilization for
studying, e.g., slowly and differentially rotating compact
stars [44], rapidly rotating relativistic stars consisting of a
perfect fluid obeying a polytropic equation of state (EoS)
[45], elastic modes of oscillation in the crust of a neutron
star [46] and neutron stars with internal anisotropic pres-
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sure [47]. In this work we employ the pulsation equations
within the Cowling approximation as derived by [20]. To
obtain these equations, fluid perturbations are decom-
posed into spherical harmonics Ylm(θ, ϕ) and a sinusoidal
time dependence exp(iωt) with frequency ω. The La-
grangian fluid displacements that represent the infinites-
imal oscillatory perturbations of the star are [21]

ξi =
(
e−ΛW,−V ∂θ,−V sin−2 θ∂ϕ

)
r−2Yℓme

iωt, (22)

being W and V functions of r. The pulsation equations
read:

W ′ =
dρ

dp

[
ω2r2eΛ−2ΦV +Φ′W

]
− ℓ(ℓ+ 1)eΛV, (23)

V ′ = 2Φ′V − eΛ
W

r2
. (24)

where primes denote the derivatives with respect to r
[20]. To close the system we need boundary conditions at
the center (r = 0) and at the surface (r = R) of the star.
The behaviour of W and V near the center of the star
can be obtained from the above equations and is given by
W (r) = Crℓ+1+O(rℓ+3) and V (r) = −Crℓ/ℓ+O(rℓ+2),
where C is an arbitrary constant. At the surface of the
star the Lagrangian perturbation in the pressure must be
zero (∆p = 0), leading to [21]

ω2r2eΛ−2ΦV +Φ′W = 0. (25)

In the case of hybrid stars, we have to impose additional
junction conditions at the density discontinuity between
the quark and the hadronic phases. These junction con-
ditions are [20]

W+ = W−, (26)

V+ =
e2Φ

ω2Rg
2

(ρ− + p

ρ+ + p

[
ω2Rg

2e−2ΦV− + e−ΛΦ′W−
]

−e−ΛΦ′W+

)
, (27)

where Rg represents the position of the density discon-
tinuity, and the values of W , V , and ρ at both sides
of the discontinuity are denoted by: W− ≡ W (Rg − 0),
V− ≡ V (Rg − 0), ρ− ≡ ρ(Rg − 0), W+ ≡ W (Rg + 0),
V+ ≡ V (Rg + 0), and ρ+ ≡ ρ(Rg + 0) [20–22]. Notice
that we have to solve the TOV equations before (23) and
(24) in order to store the variables that we need all over
the star.

One way to solve the oscillation equations for hadronic
stars and hybrid stars, i.e., without the junction condi-
tions of equations (26) and (27) is the shooting method,
which is a procedure to solve boundary value problems.
For example: if we want to integrate a system of three
dependent variables y1, y2 e y3, starting from a point x1
up to a point x2, with a boundary condition for y1 at
x1 and two conditions for y2 and y3 at x2. In this case,
one does not have the values of y2 and y3 at x1, then

the integration is made by shooting values for y2 and y3
at x1 till the boundary conditions at the final point are
satisfied. A code implementing this algorithm is found
at section 17.1 of Ref. [28]. For the oscillation equations,
we give V and W at the star’s center, but we do not
know if they satisfy Eq. (25) at the surface, so we use
the shooting method to solve this problem considering a
third differential equation: (ω2)′ = 0, being ω the eigen-
frequency of the star. We integrate for a trial value of ω2

and adjust it until we can match the boundary condition
through a Newton-Raphson procedure. For hybrid stars,
we must impose the junction conditions of equations (26)
and (27). To do this, it is possible to integrate the oscil-
lation equations up to the phase transition radius, set V
andW to fulfill the junction conditions and carry out the
integration till the star’s surface. In order to determine
the phase transition radius, it’s necessary to know the
phase transition pressure and integrate before the TOV
equations to obtain rtran.

V. RESULTS

In this work, we compute the f -mode of non-radial
oscillations (ℓ =2) for strange, hadronic and hybrid stars,
in order to know if it is possible to gain some information
about the star’s internal composition looking to the f -
frequency. Regarding strange stars, we use the MIT bag
model of Eq. (2); for hadronic stars, we use the GM1
and NL3 parametrizations related to the Lagrangian of
Eq. (1) and a Skyrme effective interaction model SLy4;
for hybrid stars, we combine the NJL (Eq. (13)) and the
MIT models with the NL3 EoS.
Figure 2 shows the f -frequency for hybrid, strange and

hadronic stars. As in Fig. 1, it is apparent when hybrid
matter takes place: there is a folding in the curve at the
mass value when the quark core takes place.
In panel (a) we present the f -frequency as a function of

stellar mass for hybrid stars combining NJL+NL3. Look-
ing just to the f -mode spectrum, it would be hard to
distinguish any information about the values of δΩ0 and
gv/gs, because the curves overlap in many regions, but
we see that for a fixed δΩ0, increasing gv/gs implies a
smaller mass where the quark core appears. This conclu-
sion can be drawn by Fig. 1 too.
Regarding panel (b), as shown by Fig. 1, a small

change in B1/4 induces a significant change in the mass
where the core arises. However, by the fact of the f -mode
curve be barely steep, it is still hard to differentiate pos-
sible values of parameters of the MIT model. Around 2.2
M⊙, we see that all the curves overlap.
In panel (d), differentiating hybrid stars with different

B is more difficult than when we set a
1/2
2 = 100 MeV

(panel (b)). Again, all curves overlap around 2.2 M⊙.
Looking to panel (c) the situation is slightly better

because strange and hadronic stars have a qualitatively
different f -mode curve behavior, with the hadronic curve
being steeper than the quark one. However, it remains
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FIG. 2: (a) f -frequency for hybrid stars using NJL+NL3, where the labels indicate the value of δΩ0 in MeV fm−3 and the

ratio gv/gs. (b) f -frequency for hybrid stars using MIT+NL3 fixing a4 = 0.5, where the labels indicate the value of a
1/2
2 in

MeV and B1/4 in MeV. (c) f -frequency for strange and hadronic stars, fixing a
1/2
2 = 100 MeV, where the labels indicate the

values of a4 and B1/4 in MeV. (d) Same caption as (b).

hard to distinguish the internal composition precisely be-
cause the curves overlap in the region with large enough
M , which is the relevant one from the observational point
of view. If we consider the overall scenario, including the
analysis of hybrid, strange and hadronic stars, all of them
have a f -frequency in the range 1.5−3.5 kHz, therefore,
it is rather difficult to make any affirmation about the
compact star’s internal composition based on these re-
sults.

VI. SUMMARY AND CONCLUSIONS

In this work we have investigated non-radial fluid os-
cillations of strange, hadronic and hybrid stars focusing
on the f -mode. In the light of the pulsars PSR J1614-
2230 and PSR J0348-0432, we have analyzed EoSs that
generate maximum stellar masses above approximately 2

M⊙, while briefly discussing the stability of these models.
For quark matter, we have used a MIT bag model and a
NJL EoSs; for hadronic matter, we employed two widely
used parametrizations of a relativistic mean-field model
and one based on Skyrme effective interactions. The
equations of oscillation were solved within the Cowling
approximation, integrated by a 5th order Runge-Kutta
with adaptive step-size and using the shooting method to
match the surface boundary condition.

We find that the f -mode is sensitive to the EoS em-
ployed, but, even so, it is rather difficult to distinguish
hadronic, strange and hybrid stars just observing the f -
frequency because of the overlap of the curves, mainly
when the masses are around 2 M⊙. Therefore, to obtain
more (observationally) relevant conclusions, we need to
analyze other oscillation modes, such as the p-mode and
the g-mode. Nonetheless, the fundamental mode helps
us to put some constraints on which frequency band ap-
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proximately would come to the detectors.
Regarding the GWs observability, since the detection

of event GW150914 by LIGO [2], many others have been
detected [4–6]. Studying stellar pulsations can help us to
analyze future observations of binary mergers, for exam-
ple.

Finally, it is important to keep in mind that there may
be other modes in the same frequency range studied here
that can make even more difficult the identification of
the internal composition of compact stars. Besides this,
it is known that rotation changes the frequency range of
the modes, although this modification would not alter

qualitatively our results [48].
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